Using the measure of interference defined in this paper, we investigate the quantum phase transition of one-dimensional Ising chains. We find that thermal fluctuations affect the interference more strongly at the crit...Using the measure of interference defined in this paper, we investigate the quantum phase transition of one-dimensional Ising chains. We find that thermal fluctuations affect the interference more strongly at the critical point. We also show that the derivative of the interference with respect to the coupling parameter, A, can be depressed by the thermal fluctuation. Finally, we find that this suppression is due to multi-particle excitations.展开更多
We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the val...We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the valuesβ = 1/4,1 =γ^-≠γ^+ = 1/2 and 0 =α^-≠α^+ =-1/2,which disagree with classical(mean ffeld) values.When K > Kmtp,the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters(Kctp),where the values of the critical expoents become β = 1/2,1 = γ^-≠γ^+= 2and 0 =α^-≠α^+ = 1.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.11355013the Talent Introduction Foundation of Kunming University of Science and Technology under Grant No.2012017034
文摘Using the measure of interference defined in this paper, we investigate the quantum phase transition of one-dimensional Ising chains. We find that thermal fluctuations affect the interference more strongly at the critical point. We also show that the derivative of the interference with respect to the coupling parameter, A, can be depressed by the thermal fluctuation. Finally, we find that this suppression is due to multi-particle excitations.
基金Supported by the National Natural Science Foundation of China under Grant No.11104032
文摘We explore the tricritical points and the critical lines of both Blume Emery Griffiths and Ising model within long-range interactions in the microcanonical ensemble.For K = Kmtp,the tricritical exponents take the valuesβ = 1/4,1 =γ^-≠γ^+ = 1/2 and 0 =α^-≠α^+ =-1/2,which disagree with classical(mean ffeld) values.When K > Kmtp,the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters(Kctp),where the values of the critical expoents become β = 1/2,1 = γ^-≠γ^+= 2and 0 =α^-≠α^+ = 1.