The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of th...The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.展开更多
We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMc...We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMcriterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite andmultipartite systems.展开更多
The longitudinal-random-fieM mixed Ising model consisting of arbitrary spin values has been studied by the use of an effective field theory with correlations (EFT). The phase diagrams of systems with mixed spins: ...The longitudinal-random-fieM mixed Ising model consisting of arbitrary spin values has been studied by the use of an effective field theory with correlations (EFT). The phase diagrams of systems with mixed spins: σ = 1/2, S = 1; σ = 1/2, S = 3/2 are plotted. Not only the discontinuity at T = 0 K, is found when both longitudinal fields are trimodal distributed, but also the trieritical behavior is observed in these phase diagrams between the bimodal and trimodal distributions of longitudinal fields, which is different from the single-spin one. The appearance of tricritical point is independent of the coordination number and spin values.展开更多
Based on the spectral now and the stratification structures of the symplectic group Sp(2n, c) , the Maslov-type index theory and its generalization, the w-index theory parameterized by all ω on the unit circle, for a...Based on the spectral now and the stratification structures of the symplectic group Sp(2n, c) , the Maslov-type index theory and its generalization, the w-index theory parameterized by all ω on the unit circle, for arbitrary paths in Sp(2n, C) are established. Then the Bott-type iteration formula of the Maslov-type indices for iterated paths in Sp(2n, C) is proved, and the mean index for any path in Sp(2n, C) is defined. Also, the relation among various Maslov-type index theories is studied.展开更多
The authors examine the quantization commutes with reduction phenomenon for Hamiltonian actions of compact Lie groups on closed symplectic manifolds from the point of view of topological K-theory and K-homology. They ...The authors examine the quantization commutes with reduction phenomenon for Hamiltonian actions of compact Lie groups on closed symplectic manifolds from the point of view of topological K-theory and K-homology. They develop the machinery of K-theory wrong-way maps in the context of orbifolds and use it to relate the quantization commutes with reduction phenomenon to Bott periodicity and the K-theory formulation of the Weyl character formula.展开更多
We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system...We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system is obtained by applying the Maslov index and Morse theory.As an application of the results,we study a class of non-autonomous differential delay equation which can be changed to non-canonical Hamiltonian system and obtain the existence of multiple periodic solutions for the equation by employing variational method.展开更多
文摘The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.
基金National Natural Science Foundation of China under Grant Nos.10675086 and KM200510028022National Key Basic Research Program of China under Grant No.2004CB318000
文摘We study the normal form of multipartite density matrices.It is shown that the correlation matrix(CM)separability criterion can be improved from the normal form we obtained under filtering transformations.Based on CMcriterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite andmultipartite systems.
基金Supported by the Research Fund of Education Department under Grant No. 2009A305Science and Technology Department under Grant No. 20061023 in Liaoning Province of China+2 种基金National Natural Science Foundation of China under Grant No. 10874062National 211 Development Fund for Key Engineering Program of Liaoning UniversityYouth Foundation of Liaoning University under Grant No. 2007LDQN03
文摘The longitudinal-random-fieM mixed Ising model consisting of arbitrary spin values has been studied by the use of an effective field theory with correlations (EFT). The phase diagrams of systems with mixed spins: σ = 1/2, S = 1; σ = 1/2, S = 3/2 are plotted. Not only the discontinuity at T = 0 K, is found when both longitudinal fields are trimodal distributed, but also the trieritical behavior is observed in these phase diagrams between the bimodal and trimodal distributions of longitudinal fields, which is different from the single-spin one. The appearance of tricritical point is independent of the coordination number and spin values.
基金National Natural Science Foundation of China MCSEC of China Qiu Shi Science and Technology Foundation.
文摘Based on the spectral now and the stratification structures of the symplectic group Sp(2n, c) , the Maslov-type index theory and its generalization, the w-index theory parameterized by all ω on the unit circle, for arbitrary paths in Sp(2n, C) are established. Then the Bott-type iteration formula of the Maslov-type indices for iterated paths in Sp(2n, C) is proved, and the mean index for any path in Sp(2n, C) is defined. Also, the relation among various Maslov-type index theories is studied.
文摘The authors examine the quantization commutes with reduction phenomenon for Hamiltonian actions of compact Lie groups on closed symplectic manifolds from the point of view of topological K-theory and K-homology. They develop the machinery of K-theory wrong-way maps in the context of orbifolds and use it to relate the quantization commutes with reduction phenomenon to Bott periodicity and the K-theory formulation of the Weyl character formula.
基金supported by Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.12KJB110015)
文摘We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system is obtained by applying the Maslov index and Morse theory.As an application of the results,we study a class of non-autonomous differential delay equation which can be changed to non-canonical Hamiltonian system and obtain the existence of multiple periodic solutions for the equation by employing variational method.