Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
The edge-to-edge matching(E2EM)crystallographic model was used to predict the orientation relationships(ORs)between LaB6 and Al.Three different possible ORs can be predicted between LaB6 and Al,which are(100)Al||(100)...The edge-to-edge matching(E2EM)crystallographic model was used to predict the orientation relationships(ORs)between LaB6 and Al.Three different possible ORs can be predicted between LaB6 and Al,which are(100)Al||(100)LaB6,[001]Al||[001]LaB6;(110)Al||(110)LaB6,[001]Al||[001]LaB6;and(111)Al||(111)LaB6,[011]Al||[011]LaB6.The prediction results are perfectly confirmed through TEM analysis and prove the nucleation potency of LaB6.The refining efficacy of Al-2La-1B refiner and its influence on the tensile properties were investigated in the as-cast Al-7Si-0.3Mg alloy.According to the results,LaB6 has higher nucleation potency than TiB2,leading to better grain refining efficacy of Al-2La-1B refiner in the as-cast Al-7Si-0.3Mg alloy.Regarding the mechanical performances,tensile properties of the as-cast Al-7Si-0.3Mg casting alloy are prominently improved after addition of Al-2La-1B refiner,due to the refined microstructures.展开更多
Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In t...Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In this study, the provenance of aeolian sediments of the Yangtze River Delta, China was examined by applying the detrial zircon U–Pb dating technique, Sr–Nd isotopic and trace element compositional analysis. U-Pb dating analysis was conducted on the Xiashu loess at three locations over the Yangtze River Delta, including Huangnishan(HNS) hill, Shengshan(SS) island and the Xuancheng(XC) area. The Xiashu loess and the sediments of the Yangtze River Valley share considerable similarity in their zircon U-Pb age spectra with the same main age peak and comparable age distribution. By contrast, significant differences in the age spectra, existbetween the Xiashu loess and loess deposits of Chinese Loess Plateau(CLP). Coarse grains of the Yangtze River Delta loess may have a proximal material source identical to the sediments from the Yangtze River valley. Sr–Nd isotopic values of the Xiashu loess match those from the northern margin of the Tibetan Plateau. Rare earth element ratios independent of grain size illustrate that the values from loess of the Yangtze River Delta mostly overlap with those of CLP loess. This feature implies that loess from the Yangtze River Delta has a dominant source of distant material similar as the CLP loess. As such, we conclude that multi-proxy analysis of sediments can shed new light on tracing the provenance of aeolian loess in the Yangtze River Delta.展开更多
As a clean and renewable future energy source, hydrogen fuel can be produced via solar water splitting. Two-dimensional (2D) black phosphorene (black-P) can harvest visible light due to the desirable band gap, which p...As a clean and renewable future energy source, hydrogen fuel can be produced via solar water splitting. Two-dimensional (2D) black phosphorene (black-P) can harvest visible light due to the desirable band gap, which promises it as a metal-free photocatalyst. However, black-P can be only used to produce hydrogen since the oxidation potential of water locates lower than the position of the valence band maximum. To improve the photocatalytic performance of black-P, here, using black-P and blue phosphorene (blue-P) monolayers, we propose a 2D van der Waals (vdW) heterojunction. Theoretical results, including the band structures, density of states, Bader charge population, charge density di erence, and optical absorption spectra, clearly reveal that the visible light absorption ability is obviously improved, and the band edge alignment of the proposed vdW heterojunction displays a typical type-II feature to effectively separate the photogenerated carriers. At the same time, the built-in interfacial electric field prevents the electron-hole recombination. These predictions suggest that the examined phosphorene-based vdW heterojunction is an efficient photocatalyst for solar water splitting.展开更多
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金Project(BM2007204)supported by Jiangsu Key Laboratory for Advanced Metallic Materials,ChinaProject(ASMA201501)supported by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,China
文摘The edge-to-edge matching(E2EM)crystallographic model was used to predict the orientation relationships(ORs)between LaB6 and Al.Three different possible ORs can be predicted between LaB6 and Al,which are(100)Al||(100)LaB6,[001]Al||[001]LaB6;(110)Al||(110)LaB6,[001]Al||[001]LaB6;and(111)Al||(111)LaB6,[011]Al||[011]LaB6.The prediction results are perfectly confirmed through TEM analysis and prove the nucleation potency of LaB6.The refining efficacy of Al-2La-1B refiner and its influence on the tensile properties were investigated in the as-cast Al-7Si-0.3Mg alloy.According to the results,LaB6 has higher nucleation potency than TiB2,leading to better grain refining efficacy of Al-2La-1B refiner in the as-cast Al-7Si-0.3Mg alloy.Regarding the mechanical performances,tensile properties of the as-cast Al-7Si-0.3Mg casting alloy are prominently improved after addition of Al-2La-1B refiner,due to the refined microstructures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41371032, 41671003, 41601189, 41672349)
文摘Given the conflicts over the proposed formation mechanisms of Xiashu loess, the question of the provenance of sediments comprising the Xiashu loess in the Yangtze River Delta has not been satisfactorily resolved. In this study, the provenance of aeolian sediments of the Yangtze River Delta, China was examined by applying the detrial zircon U–Pb dating technique, Sr–Nd isotopic and trace element compositional analysis. U-Pb dating analysis was conducted on the Xiashu loess at three locations over the Yangtze River Delta, including Huangnishan(HNS) hill, Shengshan(SS) island and the Xuancheng(XC) area. The Xiashu loess and the sediments of the Yangtze River Valley share considerable similarity in their zircon U-Pb age spectra with the same main age peak and comparable age distribution. By contrast, significant differences in the age spectra, existbetween the Xiashu loess and loess deposits of Chinese Loess Plateau(CLP). Coarse grains of the Yangtze River Delta loess may have a proximal material source identical to the sediments from the Yangtze River valley. Sr–Nd isotopic values of the Xiashu loess match those from the northern margin of the Tibetan Plateau. Rare earth element ratios independent of grain size illustrate that the values from loess of the Yangtze River Delta mostly overlap with those of CLP loess. This feature implies that loess from the Yangtze River Delta has a dominant source of distant material similar as the CLP loess. As such, we conclude that multi-proxy analysis of sediments can shed new light on tracing the provenance of aeolian loess in the Yangtze River Delta.
基金supported by the National Natural Science Foundation of China (No.21473168 and No.21873088)the Natural Science Foundation of the Anhui Higher Education Institutions (No.KJ2016A144)
文摘As a clean and renewable future energy source, hydrogen fuel can be produced via solar water splitting. Two-dimensional (2D) black phosphorene (black-P) can harvest visible light due to the desirable band gap, which promises it as a metal-free photocatalyst. However, black-P can be only used to produce hydrogen since the oxidation potential of water locates lower than the position of the valence band maximum. To improve the photocatalytic performance of black-P, here, using black-P and blue phosphorene (blue-P) monolayers, we propose a 2D van der Waals (vdW) heterojunction. Theoretical results, including the band structures, density of states, Bader charge population, charge density di erence, and optical absorption spectra, clearly reveal that the visible light absorption ability is obviously improved, and the band edge alignment of the proposed vdW heterojunction displays a typical type-II feature to effectively separate the photogenerated carriers. At the same time, the built-in interfacial electric field prevents the electron-hole recombination. These predictions suggest that the examined phosphorene-based vdW heterojunction is an efficient photocatalyst for solar water splitting.