期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
牙轮-PDC复合钻头井底流场CFD模拟研究 被引量:11
1
作者 况雨春 魏莉鸿 秦超 《石油机械》 北大核心 2013年第6期6-9,共4页
牙轮-PDC复合钻头是对硬地层采用碾压与刮切相结合破岩的一种新型钻头,随着其结构形式及破岩方法的改变,需要对其井底流场进行研究并提出新的水力结构设计。运用计算流体动力学理论,采用标准κ-ε模型以及封闭N-S湍流方程对某型复合钻... 牙轮-PDC复合钻头是对硬地层采用碾压与刮切相结合破岩的一种新型钻头,随着其结构形式及破岩方法的改变,需要对其井底流场进行研究并提出新的水力结构设计。运用计算流体动力学理论,采用标准κ-ε模型以及封闭N-S湍流方程对某型复合钻头的井底流场进行了数值模拟计算,并分析了井底压力及流速、PDC刀翼齿面和牙轮体表面流速。研究结果表明,复合钻头设计原型的水力结构存在一定缺陷,可通过合理设计钻头体中心位置结构、调整中心喷嘴射流角度以及调整2个边喷嘴的设计来加以改进。 展开更多
关键词 复合钻头 井底流场 中心喷嘴 边喷嘴 水力结构 CFD 数值模拟
下载PDF
Effect of Nonequilibrium Condensation of Moist Air on the Boundary Layer in a Supersonic Nozzle 被引量:7
2
作者 ShigeruMatsuo ShenYu 《Journal of Thermal Science》 SCIE EI CAS CSCD 1997年第4期260-272,共13页
When condensation occurs in supersonic flow fields, the flow is thected by the latent heat released. In the present study, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitediffere... When condensation occurs in supersonic flow fields, the flow is thected by the latent heat released. In the present study, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitedifference scheme with a second-order fractionabetep for time integration. Baldwin-Lomax model, that is the algebraic model, called the zero equation model was used in the computations. The effects of initial conditions (initial degree of supersaturation and total temperature in the reservoir) on condensing fiow of moist air in a supersonic circular half nozzle were investigated. In this case, the effect of condensation on the boundary layer was also discussed in detail. As a result, the simulated flow fields were compared with experimental data in good agreement, and the velocity and temperature profiles were largely changed by condensation. 展开更多
关键词 numerical simulation compressible flow CONDENSATION boundary layer moist air
原文传递
On the Existence and Stability of a Global Subsonic Flow in a 3D Infinitely Long Cylindrical Nozzle 被引量:1
3
作者 Gang XU Huicheng YIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第2期163-190,共28页
This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Cou... This paper is concerned with the problem on the global existence and stability of a subsonic flow in an infinitely long cylindrical nozzle for the 3D steady potential flow equation. Such a problem was indicated by Courant-Friedrichs in [8, p. 377]: A flow through a duct should be considered as a cal symmetry and should be determined steady, isentropic, irrotational flow with cylindriby solving the 3D potential flow equations with appropriate boundary conditions. By introducing some suitably weighted HSlder spaces and establishing a priori estimates, the authors prove the global existence and stability of a subsonic potential flow in a 3D nozzle when the state of subsonic flow at negative infinity is given. 展开更多
关键词 Subsonic flow Potential flow equation Bessel function Weighted HSlder space Global existence
原文传递
Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
4
作者 Piotr Doerffer Oskar Szulc Franco Magagnato 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第1期10-15,共6页
The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be fo... The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic. To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement. 展开更多
关键词 unsteady transonic flow shock wave nozzle flow.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部