In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area ...In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area and also withdrawal of its wall. So, optimizing possibility of mine slope is essential. Finally,the magnitude of optimized slopes for different walls of the mine in association with executive commands with better factors of safety is provided. The results show that the most important destabilizer factors are the presence of water and pore pressure in the faults and the main joints. With the omission of pore pressure, mine wall for the designed depth is quite stable. This requires a drainage pattern in the lifetime of the mine. In an optimistic point of view, the minimum factor of safety of the wall will be 2.81 even without drainage. This conclusion allows optimizing the slope to its maximum magnitude of 51 degree. With the pessimistic engineering judgment and with the higher SF, the magnitude of the slope is optimized to 47 degree.展开更多
With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. F...With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. FEM strength reduction method is used in analyzing slope stability of a wharf in Chongqing, and its accuracy is verified by comparing the acquired results with the computation of traditional limit equilibrium method. On this basis, the influences of reservoir water level variation, overload and backfill material behind the retaining wall, and soil share strength of wharf slope on slippery stratum are analyzed. Analysis shows that, there' s a most adverse water level in wharf slope, and the engineering proposals with a certain practical significance such as improve the drainage behind retaining wall, controll overload and improve the strength of backfill soil and subsoil are suggested.展开更多
文摘In this research, determination of final slope for Maiduk copper mine of Kerman is investigated according to destabilizing factors of the mine. The development of the Maiduk Mine caused the extension of the mine area and also withdrawal of its wall. So, optimizing possibility of mine slope is essential. Finally,the magnitude of optimized slopes for different walls of the mine in association with executive commands with better factors of safety is provided. The results show that the most important destabilizer factors are the presence of water and pore pressure in the faults and the main joints. With the omission of pore pressure, mine wall for the designed depth is quite stable. This requires a drainage pattern in the lifetime of the mine. In an optimistic point of view, the minimum factor of safety of the wall will be 2.81 even without drainage. This conclusion allows optimizing the slope to its maximum magnitude of 51 degree. With the pessimistic engineering judgment and with the higher SF, the magnitude of the slope is optimized to 47 degree.
文摘With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. FEM strength reduction method is used in analyzing slope stability of a wharf in Chongqing, and its accuracy is verified by comparing the acquired results with the computation of traditional limit equilibrium method. On this basis, the influences of reservoir water level variation, overload and backfill material behind the retaining wall, and soil share strength of wharf slope on slippery stratum are analyzed. Analysis shows that, there' s a most adverse water level in wharf slope, and the engineering proposals with a certain practical significance such as improve the drainage behind retaining wall, controll overload and improve the strength of backfill soil and subsoil are suggested.