期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSO-SVM组合模型的边坡滑移变形预测研究
被引量:
1
1
作者
秦志强
于良
《智能城市》
2016年第9期304-,共1页
支持向量机作为统计学习理论的产物,在非线性拟合与预测方面具有很大的优势,本文使用粒子群优化算法与支持向量机相结合的方法对边坡滑移进行预测,结果表明PSO-SVM组合模型在预测精度方面要明显优于BP神经网络。
关键词
支持向量机
粒子群优化算法
边坡滑移预测
下载PDF
职称材料
题名
基于PSO-SVM组合模型的边坡滑移变形预测研究
被引量:
1
1
作者
秦志强
于良
机构
江西理工大学
出处
《智能城市》
2016年第9期304-,共1页
文摘
支持向量机作为统计学习理论的产物,在非线性拟合与预测方面具有很大的优势,本文使用粒子群优化算法与支持向量机相结合的方法对边坡滑移进行预测,结果表明PSO-SVM组合模型在预测精度方面要明显优于BP神经网络。
关键词
支持向量机
粒子群优化算法
边坡滑移预测
分类号
P642.22 [天文地球—工程地质学]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSO-SVM组合模型的边坡滑移变形预测研究
秦志强
于良
《智能城市》
2016
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部