期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
边坡角设计的支持向量机建模与精度影响因素研究 被引量:7
1
作者 刘开云 乔春生 +1 位作者 田盛丰 滕文彦 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第2期328-335,共8页
运用人工智能领域最新的基于结构风险最小化原理的机器学习算法——支持向量机(SVM)算法,采用线性Linear 和径向基函数 RBF 两种核函数以及ε 不敏感和 Quadratic 两种损失函数,并且考虑惩罚参数 C 的不同,编写了相应的程序对影响边坡... 运用人工智能领域最新的基于结构风险最小化原理的机器学习算法——支持向量机(SVM)算法,采用线性Linear 和径向基函数 RBF 两种核函数以及ε 不敏感和 Quadratic 两种损失函数,并且考虑惩罚参数 C 的不同,编写了相应的程序对影响边坡角设计的诸多因素进行了机器学习,经过反复调整相关参数和计算对比,找到了拟合精度很高的支持向量机网络,并以此网络对测试样本作预测检验模型的可靠性;对影响支持向量机建模精度的各种影响因素作了计算和分析,在此基础上,初步确定了各参数对 SVM 模型精度影响大小的顺序,为 SVM 在类似工程上的应用提供了借鉴。 展开更多
关键词 边坡工程 边坡角设计 支持向量机建模 机器学习与预测 参数分析
下载PDF
基于组合核函数的高斯过程边坡角智能设计 被引量:9
2
作者 徐冲 刘保国 +1 位作者 刘开云 郭佳奇 《岩土力学》 EI CAS CSCD 北大核心 2010年第3期821-826,共6页
高斯过程(GP)是近年来发展迅速的一种全新学习机。与支持向量机(SVM)相比,该方法有着容易实现、超参数可自适应获取及预测输出具有概率意义等优点。结合边坡工程中的边坡角设计,编写了在多种因素影响下边坡角设计的GP程序,为克服单一核... 高斯过程(GP)是近年来发展迅速的一种全新学习机。与支持向量机(SVM)相比,该方法有着容易实现、超参数可自适应获取及预测输出具有概率意义等优点。结合边坡工程中的边坡角设计,编写了在多种因素影响下边坡角设计的GP程序,为克服单一核函数预测精度和网络泛化能力差的缺点,采用单一核函数相加作为GP的组合核函数,将自动关联性测定参数(ARD)引入其中,建立了关于超参数的GP回归网络模型,使用共轭梯度下降算法导出最优超参数,用ARD超参数进行输入属性相关性分析和特征选取,并以此网络对测试样本进行学习预测,结合支持向量回归方法给出了在回归问题上的应用和对比分析。结果表明:在边坡角智能设计应用中,采用组合核函数的GPR网络ARD参数具有明确的物理意义,预测回归性能优于SVM,且预测输出的概率解释能更好的体现预测值的代表性,为边坡角设计开辟新径。 展开更多
关键词 边坡工稃 高斯过币旱 边坡角设计 机器学习 智能预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部