It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,...In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.展开更多
This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transve...This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.展开更多
Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustaina...Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.展开更多
Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation...Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave- front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius.展开更多
Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under va...Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under various boundary conditions. Mode shapes are drawn to explain the circumferential mode number n and axial mode number m, and the natural frequencies are cal-culated numerically and compared with those of FEM (finite element method) to confirm the reliability of the analytical solution. The effects of relevant parameters on natural frequencies are discussed thoroughly. It is shown that for long thin shells the method is simple, accurate and effective.展开更多
Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be ...Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.展开更多
An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Cir...An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.展开更多
This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and ext...This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Pade approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number.展开更多
The paper describes and analyzes the sensitivity of an operational atmospheric model to different SST (sea surface temperature) estimates. The model's sensitivity has been analyzed in a Medicane (Mediterranean hur...The paper describes and analyzes the sensitivity of an operational atmospheric model to different SST (sea surface temperature) estimates. The model's sensitivity has been analyzed in a Medicane (Mediterranean hurricane) test case. Numerical simulations have been performed using the COSMO (consortium for small-scale modeling) atmospheric model, in the COSMO-ME configuration. The model results show that the model is capable of capturing the position, timing and intensity of the cyclone. Sensitivity experiments have been carried out using different SSTs surface boundary conditions for the COSMO forecasts. Four different experiments have been carried out: the first two using SST fields obtained from the OSTIA (operational sea surface temperature and sea ice analysis) system, while the other two using the SST analyses and forecasts from MFS (Mediterranean Forecasting System, Tonani et al., 2015; Pinardi and Coppini, 2010). The different boundary conditions determine differences in the trajectory, pressure minimum and wind intensity of the simulated Medicane. The sensitivity experiments showed that a colder than real SST field determines a weakening of the minimum pressure at the vortex center. MFS SST analyses and forecasts allow the COSMO model to simulate more realistic minimum pressure values, trajectories and wind speeds. It was found that MFS SST forecast, as surface boundary conditions for COSMO-ME runs, determines a significant improvement, compared to ASCAT observations, in terms of wind intensity forecast as well as cyclone dimension and location.展开更多
The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress function...The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.展开更多
A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to ...A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.展开更多
Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite...Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.展开更多
This work shows the comparison between the results of wind and temperature simulation and data weather measurements in low layers near Gualeguaychfi City, Argentine, for 12 h in January 1, 2011. The model ARPS (advan...This work shows the comparison between the results of wind and temperature simulation and data weather measurements in low layers near Gualeguaychfi City, Argentine, for 12 h in January 1, 2011. The model ARPS (advanced regional prediction system) with two options in the boundary conditions is used. In such conditions, wave-radiating open (radiative) with relaxation to the initial state were used while otherwise used absorbing boundary conditions data forced from MBLM (meso-scale boundary layer model) operational forecasters used by the National Weather Office. The results of both simulations are compared with data measured by three weather stations located around of the Uruguay River. As both simulations are initialized using the same data, there is a better agreement between the values obtained by forcing the boundary conditions for which are using "radiative" boundary conditions after 2 h physical time from the start of the simulation.展开更多
The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-re...The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.展开更多
In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this mo...In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this model can reproduce the evolution of the two traffic waves, which further proves that this model can be used to perfectly explore the consequences caused by various boundary conditions.展开更多
A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introd...A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye-Hfickel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol- vents are predicted with the new equations.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
基金Projects(2012zzts019,2012QNZT048)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(201306370121)supported by the State Scholarship Fund of China+3 种基金Project(JT20090898002)supported by Traffic Technology Fund of Hainan Province,ChinaProject(2012M521563)supported by the China Postdoctoral Science FoundationProject(51248006)supported by The National Natural Science Foundation of ChinaProject(511114)supported by the Natural Science Foundation of Hainan Province,China
文摘In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.
基金the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No.200802171009)+2 种基金Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
文摘Nanofluids have attracted many scientists due to their remarkable thermophysical properties.Small percentage of nanoparticles when added to conventional fluid significantly enhances the heat transfer features.Sustainability and efficiency of nanomaterials have key role in the advancement of nanotechnology.This article analyzes the Hall,Ohmic heating and velocity slip effects on the peristalsis of nanofluid.Convective boundary conditions and heat generation/absorption are considered to facilitate the heat transfer characteristics.Governing equations for the peristaltic flow through a curved channel are derived in curvilinear coordinates.The equations are numerically solved under the assumption of long wavelength and small Reynold number.It has been observed that nanofluid enhances the heat transfer rate and reduces the fluid temperature.Hartman number and Hall parameter show reverse behavior in fluid motion and heat transfer characteristics.In the presence of velocity slip,the pressure gradient rapidly decreases and dominant effect is seen in narrow portion of channel.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10562001 and 10765002
文摘Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave- front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius.
文摘Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under various boundary conditions. Mode shapes are drawn to explain the circumferential mode number n and axial mode number m, and the natural frequencies are cal-culated numerically and compared with those of FEM (finite element method) to confirm the reliability of the analytical solution. The effects of relevant parameters on natural frequencies are discussed thoroughly. It is shown that for long thin shells the method is simple, accurate and effective.
文摘Almost all the coal is produced from open cut mines in Indonesia. As a consequence of open cut mine application, a great deal of coal is left out in the highwalls of the mined-out pits. Highwall mining systems can be used to recover this coal. The use of highwall mining systems has increasingly come into play in the US and Australia. However, it is not common in Indonesia. Moreover, Indonesia coal measure is categorized as weak geological condition. Some problems are likely to arise during the application of the highwall mining system for example instability of openings and highwalls due to the roof and pillar failures. Therefore, study of highwall mining system application in Indonesia is needed in order to increase the recovery rate of coal mining in Indonesia. This paper described the characteristics of the highwa!l mining system and discussed the appropriate highwall mining system application in weak geological condition, Indonesia. From the results of a series of laboratory tests and numerical analyses, it can be concluded that the stability of pillars and mine openings in auger mining systems is much higher than that in CHM and an auger mining system is suitable for such as very weak/poor strata conditions. Moreover, the application of backfilling system is very effective for improvement of the stability of pillar and openings.
基金partially supported by the National Basic Research Program of China[grant number 2013CB956204]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403],[grant number XDA11010304]the National Natural Science Foundation of China[grant number 41305028]
文摘An OGCM, LICOM2.0, was used to investigate the effects of different surface boundary conditions for sea surface salinity (SSS) on simulations of global mean salinity, SSS, and the Atlantic Meridional Overturning Circulation (AMOC). Four numerical experiments (CTRL, Expl, Exp2 and Exp3) were designed with the same forcing data-set, CORE.v2, and different surface boundary conditions for SSS~ A new surface salinity boundary condition that consists of both virtual and real salt fluxes was adopted in the fourth experiment (Exp3). Compared with the other experiments, the new salinity boundary condition prohibited a monotonous increasing or decreasing global mean salinity trend. As a result, global salinity was approximately conserved in EXP3. In the default salinity boundary condition setting in LICOM2.0, a weak restoring salinity term plays an essential role in reducing the simulated SSS bias, tending to increase the global mean salinity. However, a strong restoring salinity term under the sea ice can reduce the global mean salinity. The authors also found that adopting simulated SSS in the virtual salt flux instead of constant reference salinity improved the simulation of AMOC, whose strength became closer to that observed.
基金Supported by the National Natural Science Foundation of China(21206009)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHR201107123)Program for Doctoral Fund in Beijing University of Civil Engineering and Architecture(101102307)
文摘This study is focused on a steady dissipative layer, which is generated by Marangoni convection flow over the surface resulted from an imposed temperature gradient, coupled with buoyancy effects due to gravity and external pressure. A model is proposed with Marangoni condition in the boundary conditions at the interface. The similarity equations are determined and approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Pade approximant technique. For the cases that buoyancy force is favorable or unfavor-able to Marangoni flow, the features of flow and temperature fields are investigated in terms of Marangoni mixed convection parameter and Prantl number.
文摘The paper describes and analyzes the sensitivity of an operational atmospheric model to different SST (sea surface temperature) estimates. The model's sensitivity has been analyzed in a Medicane (Mediterranean hurricane) test case. Numerical simulations have been performed using the COSMO (consortium for small-scale modeling) atmospheric model, in the COSMO-ME configuration. The model results show that the model is capable of capturing the position, timing and intensity of the cyclone. Sensitivity experiments have been carried out using different SSTs surface boundary conditions for the COSMO forecasts. Four different experiments have been carried out: the first two using SST fields obtained from the OSTIA (operational sea surface temperature and sea ice analysis) system, while the other two using the SST analyses and forecasts from MFS (Mediterranean Forecasting System, Tonani et al., 2015; Pinardi and Coppini, 2010). The different boundary conditions determine differences in the trajectory, pressure minimum and wind intensity of the simulated Medicane. The sensitivity experiments showed that a colder than real SST field determines a weakening of the minimum pressure at the vortex center. MFS SST analyses and forecasts allow the COSMO model to simulate more realistic minimum pressure values, trajectories and wind speeds. It was found that MFS SST forecast, as surface boundary conditions for COSMO-ME runs, determines a significant improvement, compared to ASCAT observations, in terms of wind intensity forecast as well as cyclone dimension and location.
文摘The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.
基金Supported by the National Key Basic Research Program of China(2013CB228305)
文摘A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrangement of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum.A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations.Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is feasible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the algorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.
基金Project(51222405)supported by the National Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of China+1 种基金Project(132002)supported by the Fok Ying Tong Education Foundation,ChinaProject(N120502001)supported by the Basic Scientific Research Operation of Center University of China
文摘Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.
文摘This work shows the comparison between the results of wind and temperature simulation and data weather measurements in low layers near Gualeguaychfi City, Argentine, for 12 h in January 1, 2011. The model ARPS (advanced regional prediction system) with two options in the boundary conditions is used. In such conditions, wave-radiating open (radiative) with relaxation to the initial state were used while otherwise used absorbing boundary conditions data forced from MBLM (meso-scale boundary layer model) operational forecasters used by the National Weather Office. The results of both simulations are compared with data measured by three weather stations located around of the Uruguay River. As both simulations are initialized using the same data, there is a better agreement between the values obtained by forcing the boundary conditions for which are using "radiative" boundary conditions after 2 h physical time from the start of the simulation.
基金Supported by the National Natural Science Foundation for Young Scientists of China(No.40806012)
文摘The velocity structure of the residual current across an entire section of the Qiongzhou Strait(QS) in summer is presented for the fi rst time. Shipboard Acoustic Doppler Current Profi le measurements, from the mid-region of the QS(110.18°E), were collected on 1–4 August 2010. The diurnal tidal currents had their maximum amplitudes between 4.24 and 20.24 m. Their amplitude along the major axis ranged from approximately 0.55 m/s in the middle part of the strait(20.15°N) to 0.84 m/s in the north part of the strait(20.20°N). Both anticlockwise and clockwise tidal current rotations exist in the QS. During the observation period(neap tide), a signifi cant westward residual current occupied almost the entire study section. Two velocity cores of westward current were observed at the northern part and near the deepest trough, although an eastward current appeared in the middle part of the transect. The deepest core was located near 62 m at 20.13°N, with a maximum velocity of-0.34 m/s. The shallower core was located at approximately 16 m at 20.20°N, with a maximum velocity of-0.33 m/s. The estimated total volume of water transported through the QS was-0.16 Sv. This value is an important boundary condition, applicable to numerical models studying coastal ocean circulation in the northwestern South China Sea.
基金Supported by the Programs for the New Century Excellent Talents in University under Grant No. NCET-08-0038the National Natural Science Foundation of China under Grant Nos. 70701002, 70971007 and 70521001the State Key Basic Research Program of China under Grant No. 2006CB705503
文摘In this paper, we use the speed-gradient model proposed by Jiang et al. [Transp. Res. B 36 (2002) 405] to study the effect of boundary condition on shock and rarefaction wave. Our numerical results show that this model can reproduce the evolution of the two traffic waves, which further proves that this model can be used to perfectly explore the consequences caused by various boundary conditions.
基金Supported by the National Natural Science Foundation of China(21206010)
文摘A rigorous approach is proposed to model the mean ion activity coefficient for strong electrolyte systems using the Poisson-Boltzmann equation. An effective screening radius similar to the Debye decay length is introduced to define the local composition and new boundary conditions for the central ion. The crystallographic ion size is also considered in the activity coefficient expressions derived and non-electrostatic contributions are neglected. The model is presented for aqueous strong electrolytes and compared with the classical Debye-Hfickel (DH) limiting law for dilute solutions. The radial distribution function is compared with the DH and Monte Carlo studies. The mean ion activity coefficients are calculated for 1:1 aqueous solutions containing strong electrolytes composed of alkali halides. The individual ion activity coefficients and mean ion activity coefficients in mixed sol- vents are predicted with the new equations.