The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi...The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.展开更多
Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to sl...Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to slope stability under dif- ferent slope gradient, an unconsolidated and undrained triaxial compression test was conducted to measure the shear strengths of soil and root-soil composite in the two slopes in eastern Qinghai Province. In addition, under the protection of plant roots, the effect of gradient on stability of soil slope was investigated by limit equilibrium method. The results showed that the stability coefficient of soil slope planted with two kinds of brush was decreased with the increase in slope gradient, and the sta- bility coefficient increment of soil slope containing Atriplex canescens roots was higher than that containing Caragana korshinskii roots. When the slope gradient ranged from 25° to 50°, the stability coefficient of soil slope planted with Atriplex canescens or Caragana korshinskii ranged from 0.80 to 1.38. However, when the slope gradient exceeded 55°, the increment of stability coefficient of soil slope became small.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach...The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach of partial derivation with respect to stochastic variables,considering the yield limit,rotation speeds and material density to be the fundamental stochastic variables.Through analyzing a numerical example and a turbo-disk of an aeroengine,the results show that the method developed is successful.展开更多
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi...A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement disconti...Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement discontinuity element presented by Crouch and Starfied and crack-tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack-tip displacement discontinuity .clement is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and other boundaries. The present numerical re- suits further illustrate that the present numerical approach is very effective and accurate for calculating stress intensity factors of complex cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the p...The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
In order to expand the application of strength reduction methods with the ubiquitous-joint criterion, the corresponding program is compiled using FLAC3D software. A procedure for strength reduction in the ubiquitous-j...In order to expand the application of strength reduction methods with the ubiquitous-joint criterion, the corresponding program is compiled using FLAC3D software. A procedure for strength reduction in the ubiquitous-joint criterion is proposed to study the safety factor of slopes as well as the relationships of the bedding plane inclination angle β and the safety factor F. The results show that: 1) for the bedding rock slope, the various failure modes cause different variations of the safety factor F; 2) a bed- ding rock slope can be divided into two types by the angle between the bedding plane inclination and slope surface inclination a; when a_〈45~, the bedding slope can be strictly defined as the subsequent bedding rock slope; when 45°〈α〈90°, the bedding slope is defined as an oblique bedding slope; 3) for bedding rock slopes, the safety factor increases with an increase in a; for inverse bed- ding slopes, when the bedding plane inclination angle fl is small, the safety factor F of the slope increases at first, then decreases with an increase in a; when β is large, the safety factor F increases with an increase in α.展开更多
Field pull-out and laboratory tests were applied to investigate the effect of metal bolts and wire netting on plant root distribution and anchorage characteristics of 9-year-old Vitex negundo L. growing on a weakly we...Field pull-out and laboratory tests were applied to investigate the effect of metal bolts and wire netting on plant root distribution and anchorage characteristics of 9-year-old Vitex negundo L. growing on a weakly weathered rocky slope (38°). Root number, length and diameter were recorded and single root specimens were classified and tested for tensile strength. The results show that root anchorage is different between the two constructions by bolts and wire. Under limited soil condition, root anchorage ability is 80% lower than when there is sufficient soil due to the reduction of the diameter and number of all second-order lateral roots, as well as the reduction of the tensile strength of the embedded second-order and first-order lateral roots on limited soil. We conclude that the distribution and anchorage of Vitex negundo L. is affected by limited soil availability on rocky slopes.展开更多
To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which s...To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which supports both traditional communication and MEC services.However,this kind of intensive computing problem is a high dimensional NP hard problem,and some machine learning methods do not have a good effect on solving this problem.In this paper,the Markov decision process model is established to find the excellent task offloading scheme,which maximizes the long-term utility performance,so as to make the best offloading decision according to the queue state,energy queue state and channel quality between mobile users and BS.In order to explore the curse of high dimension in state space,a candidate network is proposed based on edge computing optimize offloading(ECOO)algorithm with the application of deep deterministic policy gradient algorithm.Through simulation experiments,it is proved that the ECOO algorithm is superior to some deep reinforcement learning algorithms in terms of energy consumption and time delay.So the ECOO is good at dealing with high dimensional problems.展开更多
The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress function...The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.展开更多
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui...Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.展开更多
The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deforma...The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the collision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation than that in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calculated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction boundary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and the small extension in the northern part. The difference of the stress state between the two types of subduction model is also manifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric and gravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlying plate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in the southern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction of high angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in the northern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northern Ryukyu Trench stand in small stress.展开更多
In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameter...In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameters of structural plane; The second aspect is analysis of shear strength of structural plane.展开更多
基金Project (10972238) supported by the National Natural Science Foundation of ChinaProject (2010ssxt237) supported by the Excellent Doctoral Thesis Program of Central South University,China
文摘The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method.
基金Supported by Scientific Research Fund for Middle-aged and Young Scientists of Qinghai University(2012-QGY-5)"123 High-level Personnel Training Project"of Qinghai UniversityProject of Geological Resources and Geological Engineering Innovation Team of Qinghai University(4056051201)~~
文摘Abundant herbaceous and shrub roots play an important role in preventing water and soil erosion and increasing shallow slope stability. In order to make a quantitative analysis on the contribution of root system to slope stability under dif- ferent slope gradient, an unconsolidated and undrained triaxial compression test was conducted to measure the shear strengths of soil and root-soil composite in the two slopes in eastern Qinghai Province. In addition, under the protection of plant roots, the effect of gradient on stability of soil slope was investigated by limit equilibrium method. The results showed that the stability coefficient of soil slope planted with two kinds of brush was decreased with the increase in slope gradient, and the sta- bility coefficient increment of soil slope containing Atriplex canescens roots was higher than that containing Caragana korshinskii roots. When the slope gradient ranged from 25° to 50°, the stability coefficient of soil slope planted with Atriplex canescens or Caragana korshinskii ranged from 0.80 to 1.38. However, when the slope gradient exceeded 55°, the increment of stability coefficient of soil slope became small.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
文摘The stochastic boundary element method(SBEM)is developed in this paper for 3D problems with body forces and reliability analysis of engineering structures.The integral equations of SBEM are established by the approach of partial derivation with respect to stochastic variables,considering the yield limit,rotation speeds and material density to be the fundamental stochastic variables.Through analyzing a numerical example and a turbo-disk of an aeroengine,the results show that the method developed is successful.
基金Project(11072269)supported by the National Natural Science Foundation of ChinaProject(20090162110066)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金Sponsored by the National Natural Science Foundation of China (Grant No.10272037).
文摘Concerns with stress intensity factors for cracks emanating from an elliptical hole in a rectangular plate under biaxial loads by means of a boundary element method which consists of non-singular displacement discontinuity element presented by Crouch and Starfied and crack-tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack-tip displacement discontinuity .clement is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and other boundaries. The present numerical re- suits further illustrate that the present numerical approach is very effective and accurate for calculating stress intensity factors of complex cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
文摘The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
基金Project 5049027 supported by the National Natural Science Foundation of China
文摘In order to expand the application of strength reduction methods with the ubiquitous-joint criterion, the corresponding program is compiled using FLAC3D software. A procedure for strength reduction in the ubiquitous-joint criterion is proposed to study the safety factor of slopes as well as the relationships of the bedding plane inclination angle β and the safety factor F. The results show that: 1) for the bedding rock slope, the various failure modes cause different variations of the safety factor F; 2) a bed- ding rock slope can be divided into two types by the angle between the bedding plane inclination and slope surface inclination a; when a_〈45~, the bedding slope can be strictly defined as the subsequent bedding rock slope; when 45°〈α〈90°, the bedding slope is defined as an oblique bedding slope; 3) for bedding rock slopes, the safety factor increases with an increase in a; for inverse bed- ding slopes, when the bedding plane inclination angle fl is small, the safety factor F of the slope increases at first, then decreases with an increase in a; when β is large, the safety factor F increases with an increase in α.
基金founded by Major Project of Chinese National Programs for Fundamental Research and Development (Grant No.2007CB416603)
文摘Field pull-out and laboratory tests were applied to investigate the effect of metal bolts and wire netting on plant root distribution and anchorage characteristics of 9-year-old Vitex negundo L. growing on a weakly weathered rocky slope (38°). Root number, length and diameter were recorded and single root specimens were classified and tested for tensile strength. The results show that root anchorage is different between the two constructions by bolts and wire. Under limited soil condition, root anchorage ability is 80% lower than when there is sufficient soil due to the reduction of the diameter and number of all second-order lateral roots, as well as the reduction of the tensile strength of the embedded second-order and first-order lateral roots on limited soil. We conclude that the distribution and anchorage of Vitex negundo L. is affected by limited soil availability on rocky slopes.
基金National Natural Science Foundation of China(No.11461038)Science and Technology Support Program of Gansu Province(No.144NKCA040)。
文摘To improve the quality of computation experience for mobile devices,mobile edge computing(MEC)is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network,which supports both traditional communication and MEC services.However,this kind of intensive computing problem is a high dimensional NP hard problem,and some machine learning methods do not have a good effect on solving this problem.In this paper,the Markov decision process model is established to find the excellent task offloading scheme,which maximizes the long-term utility performance,so as to make the best offloading decision according to the queue state,energy queue state and channel quality between mobile users and BS.In order to explore the curse of high dimension in state space,a candidate network is proposed based on edge computing optimize offloading(ECOO)algorithm with the application of deep deterministic policy gradient algorithm.Through simulation experiments,it is proved that the ECOO algorithm is superior to some deep reinforcement learning algorithms in terms of energy consumption and time delay.So the ECOO is good at dealing with high dimensional problems.
文摘The development of an analytic solution in terms of laminate parameters is presented for contact stresses and joint strength in pin-loaded orthotropic plates. This involved the determination of complex stress functions required to compute stresses in terms of a set of unknown coefficients for the specified displacement expressions satisfying the prescribed boundary conditions. The assumed Coulomb friction between the plate and the pin was used to provide the solution and iteration was also used to determine the extent of contact region. The results from present study showed good agreement with the available results in literature for all the joint configurations evaluated.
基金Project(2015M580702)supported by China Postdoctoral Science FoundationProject(51608541)supported by the National Natural Science Foundation of ChinaProject(2014122066)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used.
文摘The Ryukyu trench-arc system can be divided into two types according to its subduction model. The normal subduction in the northern part of the Philippine Sea plate creates a hinge sedimentary wedge with large deformation at the collision front, while the oblique subduction in the southern part gives rise to a smaller accretion with small deformation than that in the northern part. The mechanisms that cause the distinction between these two types have been analysed and calculated by using gravity data based on the lithosphere rheology and the stress state of the lithosphere in the subduction boundary. The two types of subduction model are associated with the internal extension in the southern Okinawa Trough and the small extension in the northern part. The difference of the stress state between the two types of subduction model is also manifested in other tectonic features, such as topography, volcanic activity and crust movement. Modeling bathymetric and gravity data from this area suggests that the oblique subduction of low angle, together with smooth geometry of the overlying plate crust, results in small stress released on the south of the trench by the subduction plate. The intraplate faults in the southern Okinawa Trough behind the trench stand in surplus intensive stress. On the other hand, the normal subduction of high angle, together with strong undulation geometry of the overlying crust, results in more intensive stress released in the northern Ryukyu Trench than that in the south. The intraplate faults in the northern Okinawa Trough behind the northern Ryukyu Trench stand in small stress.
文摘In this paper, firstly, the rock slope and rock mass structure are introduced. And then, two aspects of the study of the structural plane are discussed: The first aspect is method for determining mechanical parameters of structural plane; The second aspect is analysis of shear strength of structural plane.