To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theore...In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.展开更多
A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multila...A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multilayer metal-coated waveguides. According to the equivalent surface impedance boundary condition,the relationship between transverse field components on the boundary can be easily depicted. Once the eigen equation is solved,the propagation constant can be obtained as the eigen value for a given frequency. Results of the proposed method agaree well with those of high frequency structure simulator(HFSS).展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in...In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat...Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.展开更多
In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficien...In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.展开更多
In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansio...In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite tim...This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.展开更多
Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary in...Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.展开更多
Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results o...Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results of the esistence, the uniqueness and the continuous dependence on aprameter of soiutions of the boundary value problems for second order functional differential equations with impulses are obtained.展开更多
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
文摘In this paper, we study a class singular perturbed elliptic equation boundary value problem with a super surface of turning point in n-dimensional space by using the method of multiple scales and the comparison theorem. The uniformly valid asymptotic approxmations of solutions for the boundary value problem is constructed.
基金Supported by the Project Innovation of Graduate Students of Jiangsu Province of China(CX09B-079Z)the Basic Research Items of National Key Lab of Electronic Measurement Technology~~
文摘A compact four-component two-dimensional (2-D) finite-difference frequency domain (FDFD) method with the equivalent surface impedance boundary condition is used to analyze the dispersion characteristics of multilayer metal-coated waveguides. According to the equivalent surface impedance boundary condition,the relationship between transverse field components on the boundary can be easily depicted. Once the eigen equation is solved,the propagation constant can be obtained as the eigen value for a given frequency. Results of the proposed method agaree well with those of high frequency structure simulator(HFSS).
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金supported in part by the National Natural Science Foundation of China(Grant No.40974069)PetroChina Innovation Foundation(Grant No.2009D-5006-03-01)+1 种基金National Key Basic Research Development Program(GrantNo.2007CB209601)National Major Science and Technology Program(Grant Nos.2008ZX05010-002 and 2008ZX05024-001)
文摘In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.
基金supported by the 863 Program(Grant No.2006AA06Z202)Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金CNPC Young Innovation Fund(Grant No.05E7028)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results.
文摘In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.
文摘In this paper, the fixed-point Theorem i s used to estimate an asymptotic solution of boundary value problems for a class o f third order quasilinear differential equation and the uniformly valid asymptot ic expansion of solution of any orders including boundary layer is obtained.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.
文摘This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.
文摘Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation, and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
文摘Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results of the esistence, the uniqueness and the continuous dependence on aprameter of soiutions of the boundary value problems for second order functional differential equations with impulses are obtained.