The concept of the incidence chromatic number of a graph was introduced by Brualdi and Massey. They conjectured that every graph G can be incidence colored with Δ (G) +2 colors. In this paper, the trueness of this co...The concept of the incidence chromatic number of a graph was introduced by Brualdi and Massey. They conjectured that every graph G can be incidence colored with Δ (G) +2 colors. In this paper, the trueness of this conjecture for complete k partite graph was proved, and the incidence chromatic number of complete k partite graphs was calculated.展开更多
A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong ed...A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC: and x'as(G) = min{k|k-ASEC of G} is called the adjacent strong edge chromatic number. In this paper, we study the x'as(G) of Halin graphs with △A(G)≥5.展开更多
A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of ...A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chromatic number is defined as x'as(G) = min{k| there is a k-adjacent strong edge coloring of G}. In this paper, it has been proved that △ ≤ x'as(G) ≤ △ + 1 for outer plane graphs with △(G) ≥ 5, and X'as(G) = △ + 1 if and only if there exist adjacent vertices with maximum degree.展开更多
In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the doub...In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively.展开更多
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G...A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.展开更多
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ'a(G), is the least number of colors such that G has an acyclic edge k-colo...A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ'a(G), is the least number of colors such that G has an acyclic edge k-coloring. Let G be a graph with maximum degree Δ and girth g(G), and let 1≤r≤2Δ be an integer. In this paper, it is shown that there exists a constant c > 0 such that if g(G)≥cΔ r log(Δ2/r) then χa(G)≤Δ + r + 1, which generalizes the result of Alon et al. in 2001. When G is restricted to series-parallel graphs, it is proved that χ'a(G) = Δ if Δ≥4 and g(G)≥4; or Δ≥3 and g(G)≥5.展开更多
Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence...Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence theorem for frame-GBTDs of type gnand block size k via decompositions of edge-colored complete digraphs into prescribed edge-colored subgraphs.展开更多
Graph coloring has interesting real life applications in optimization and network design. In this paper some new results on the acyclic-edge coloring, f-edge coloring, g-edge cover coloring, (g, f)-coloring and equi...Graph coloring has interesting real life applications in optimization and network design. In this paper some new results on the acyclic-edge coloring, f-edge coloring, g-edge cover coloring, (g, f)-coloring and equitable edge-coloring of graphs are introduced. In particular, some new results related to the above colorings obtained by the authors are given. Some new problems and conjectures are presented.展开更多
文摘The concept of the incidence chromatic number of a graph was introduced by Brualdi and Massey. They conjectured that every graph G can be incidence colored with Δ (G) +2 colors. In this paper, the trueness of this conjecture for complete k partite graph was proved, and the incidence chromatic number of complete k partite graphs was calculated.
基金Supported by NNSFC(19871036)"Qing Lan"talent funds of Lanzhou Railway Institute.
文摘A proper k-edge coloring f of graph G(V, E) is said to be a k:-adjacent strong edge coloring of graph G(V,E) iff every uv∈E(G) satisfy f[u]≠f/[v], where f[u] = {f(uw)|uw ∈E(G)} then f is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC: and x'as(G) = min{k|k-ASEC of G} is called the adjacent strong edge chromatic number. In this paper, we study the x'as(G) of Halin graphs with △A(G)≥5.
基金National Natural Science Foundation of China (No. 19871036) Qinglan talent Funds of Lanzhou Jiaotong University.
文摘A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-edge coloring f of graph G(V, E) such that f[u] ≠ f[v] for every uv ∈ E(G), where f[u] = {f(uw)|uw ∈ E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chromatic number is defined as x'as(G) = min{k| there is a k-adjacent strong edge coloring of G}. In this paper, it has been proved that △ ≤ x'as(G) ≤ △ + 1 for outer plane graphs with △(G) ≥ 5, and X'as(G) = △ + 1 if and only if there exist adjacent vertices with maximum degree.
基金National Natural Science Foundation of China (60103021, 60274026)
文摘In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively.
基金supported by National Natural Science Foundation of China(Grant Nos.10931003 and 11171160)by Doctoral Fund of Ministry of Education of China(Grant No.10871011)
文摘A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.
基金supported by National Natural Science Foundation of China (Grant Nos.11001055,11101086,11101088)National Natural Science Foundation of Fujian Province (Grant Nos.2010J05004,2011J06001,JK2010007)
文摘A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ'a(G), is the least number of colors such that G has an acyclic edge k-coloring. Let G be a graph with maximum degree Δ and girth g(G), and let 1≤r≤2Δ be an integer. In this paper, it is shown that there exists a constant c > 0 such that if g(G)≥cΔ r log(Δ2/r) then χa(G)≤Δ + r + 1, which generalizes the result of Alon et al. in 2001. When G is restricted to series-parallel graphs, it is proved that χ'a(G) = Δ if Δ≥4 and g(G)≥4; or Δ≥3 and g(G)≥5.
基金supported by National Natural Science Foundation of China(Grant Nos.11271280 and 11201328)Graduate Student Research and Innovation Program of Jiangsu Province(Grant No.CXZZ13 0794)
文摘Generalized balanced tournament designs(GBTDs) are an equivalent characterization of a class of equitable symbol weight codes. Motivated by the construction of GBTDs, we establish in this paper an asymptotic existence theorem for frame-GBTDs of type gnand block size k via decompositions of edge-colored complete digraphs into prescribed edge-colored subgraphs.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10871119, 10971121 and Quality Control Standards on Undergraduate Medical Education under Grant No. 200804220001.
文摘Graph coloring has interesting real life applications in optimization and network design. In this paper some new results on the acyclic-edge coloring, f-edge coloring, g-edge cover coloring, (g, f)-coloring and equitable edge-coloring of graphs are introduced. In particular, some new results related to the above colorings obtained by the authors are given. Some new problems and conjectures are presented.