The authors analyzed the characteristic of surrounding rock temperature field around a drifting face, set up its mathematic model, and got its numerical result with the boundary element method(BEM). To calculate in tr...The authors analyzed the characteristic of surrounding rock temperature field around a drifting face, set up its mathematic model, and got its numerical result with the boundary element method(BEM). To calculate in tra domain integral, it was transformed into boundary integration with the DRM method. Using the similitude theory, the dimensionless differential equation was educed. Finally, the authors calculated two drifting faces of Sanhejian Coal Mine using the computer software developed by authors based on the above principium, and got the distribution characteristic of surrounding rock temperature field around a drifting face and the periodic variation in temperature with its periodic moving forward. Comparing the calculated heat dissipating capacity of surrounding rock with the measured data shows that the computer software is proper.展开更多
文摘The authors analyzed the characteristic of surrounding rock temperature field around a drifting face, set up its mathematic model, and got its numerical result with the boundary element method(BEM). To calculate in tra domain integral, it was transformed into boundary integration with the DRM method. Using the similitude theory, the dimensionless differential equation was educed. Finally, the authors calculated two drifting faces of Sanhejian Coal Mine using the computer software developed by authors based on the above principium, and got the distribution characteristic of surrounding rock temperature field around a drifting face and the periodic variation in temperature with its periodic moving forward. Comparing the calculated heat dissipating capacity of surrounding rock with the measured data shows that the computer software is proper.