A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be ...A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.展开更多
In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular different...In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.展开更多
文摘A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.
基金supported by National Natural Science Foundation of China(Grant No.11171227)Fund for Doctoral Authority of China(Grant No.20123127110001)+1 种基金Fund for E-institute of Shanghai Universities(Grant No.E03004)Leading Academic Discipline Project of Shanghai Municipal Education Commission(Grant No.J50101)
文摘In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral method and the generalized Jacobi spectral method for various problems, including degenerated and singular differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica- tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions. We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec- tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and exterior problems.