Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite...Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.展开更多
The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to dev...The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.展开更多
We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thi...We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thinning by thermal con vection. The model domain is 700 km deep and 700 km wide with a resolution of 71x71 nodes and 160000 markers. The ve locity boundary conditions are freeslip along all the boundaries. A thermal insulation condition was applied at the two side walls, with constant temperatures for the top and bottom boundaries. We assumed an initial temperature of 273 K at the upper boundary and 1673 K at the lower boundary, and 1573 K at the bottom of the lithosphere (200 km depth) for the thick, cold, and stable North China Craton (NCC). We calculated the thermal evolution in the upper mantle when the temperature at its bottom is raised because of lower mantle convection or plumes. The temperature at the bottom of the upper mantle was set at 1773, 1873, 1973, and 2073 K for different models to study the temperature effect on the lithospheric thinning processes. Our endmember calculations show that with the bottom boundary raising the lithosphere can be thinned from a depth of 200 km to a depth of between 100 and 126.25 km. The thinning rates are at mm/y order of magnitude, and the thinning timescale is about 10 Ma.展开更多
基金Project(51222405)supported by the National Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of China+1 种基金Project(132002)supported by the Fok Ying Tong Education Foundation,ChinaProject(N120502001)supported by the Basic Scientific Research Operation of Center University of China
文摘Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.
文摘The present work analyzes the effect of aerosols on the evolution of the atmospheric boundary layer (ABL) over Shangdianzi in Beijing.A one-dimensional ABL model and a radiative transfer scheme are incorporated to develop the structure of the ABL.The diurnal variation of the atmospheric radiative budget,atmospheric heating rate,sensible and latent heat fluxes,surface and the 2 m air temperatures as well as the ABL height,and its perturbations due to the aerosols with different single-scattering albedo (SSA) are studied by comparing the aerosol-laden atmosphere to the clean atmosphere.The results show that the absorbing aerosols cause less reduction in surface evaporation relative to that by scatting aerosols,and both surface temperature and 2 m temperature decrease from the clean atmosphere to the aerosol-laden atmosphere.The greater the aerosol absorption,the more stable the surface layer.After 12:00 am,the 2 m temperature increases for strong absorption aerosols.In the meantime,there is a slight decrease in the 2 m temperature for purely scattering aerosols due to radiative cooling.The purely scattering aerosols decrease the ABL temperature and enhance the capping inversion,further reducing the ABL height.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 90814014 & 40971226)Sino-Probe 09-03 (YOQ0360032)Sino-Probe 07
文摘We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thinning by thermal con vection. The model domain is 700 km deep and 700 km wide with a resolution of 71x71 nodes and 160000 markers. The ve locity boundary conditions are freeslip along all the boundaries. A thermal insulation condition was applied at the two side walls, with constant temperatures for the top and bottom boundaries. We assumed an initial temperature of 273 K at the upper boundary and 1673 K at the lower boundary, and 1573 K at the bottom of the lithosphere (200 km depth) for the thick, cold, and stable North China Craton (NCC). We calculated the thermal evolution in the upper mantle when the temperature at its bottom is raised because of lower mantle convection or plumes. The temperature at the bottom of the upper mantle was set at 1773, 1873, 1973, and 2073 K for different models to study the temperature effect on the lithospheric thinning processes. Our endmember calculations show that with the bottom boundary raising the lithosphere can be thinned from a depth of 200 km to a depth of between 100 and 126.25 km. The thinning rates are at mm/y order of magnitude, and the thinning timescale is about 10 Ma.