在一些现实场景中,数据不平衡问题普遍存在,严重影响模型的预测结果。合成少数类过采样技术(Synthetic Minority Over-Sampling Technique,SMOTE)是解决非平衡分类问题的一种方法,但存在局限性。针对数据中的类不平衡问题,提出基于数据...在一些现实场景中,数据不平衡问题普遍存在,严重影响模型的预测结果。合成少数类过采样技术(Synthetic Minority Over-Sampling Technique,SMOTE)是解决非平衡分类问题的一种方法,但存在局限性。针对数据中的类不平衡问题,提出基于数据分布和聚类加权的改进SMOTE随机森林分类算法(Random Forest Using SMOTE Based on Data Distribution and Cluster Weighting,DCSMOTE-RF)。该算法通过获取样本分布信息,将少数类样本划分到不同簇群,根据簇群信息量为每个区域分配不同合成份额;少数类样本结合自身权重,生成相应规模的目标样本;通过基于随机森林学习评价训练数据。10组非平衡数据集仿真试验结果表明,DCSMOTE-RF算法对非平衡数据具有较好的预测效果。展开更多
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN...针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。展开更多
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间...针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。展开更多
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on...针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。展开更多
针对合成少数类过采样技术等基于近邻值的过采样算法在处理数据类不平衡时,不能根据少数类样本分布情况及时调整模型参数,导致过采样后的数据集引入噪声,并且在原始分布区域上无差别地合成少数类实例造成过拟合等问题,提出了一种特征边...针对合成少数类过采样技术等基于近邻值的过采样算法在处理数据类不平衡时,不能根据少数类样本分布情况及时调整模型参数,导致过采样后的数据集引入噪声,并且在原始分布区域上无差别地合成少数类实例造成过拟合等问题,提出了一种特征边界和密度适应的SMOTE算法(SMOTE algorithm for feature boundary and density adaptation,BDA-SMOTE)。该算法为每一个少数类样本规划安全区域,增加少数类的分布,同时基于数据的分布密度动态地调整模型参数,确保生成的数据具有明显的特征边界,防止过拟合。在公开数据集KEEL上与常用的SMOTE算法进行实验对比,结果BDA-SMOTE的性能优于其他基于近邻SMOTE算法。表明该算法较好地扩展了原数据集的分布,同时合成的噪声样本更少。展开更多
文摘在一些现实场景中,数据不平衡问题普遍存在,严重影响模型的预测结果。合成少数类过采样技术(Synthetic Minority Over-Sampling Technique,SMOTE)是解决非平衡分类问题的一种方法,但存在局限性。针对数据中的类不平衡问题,提出基于数据分布和聚类加权的改进SMOTE随机森林分类算法(Random Forest Using SMOTE Based on Data Distribution and Cluster Weighting,DCSMOTE-RF)。该算法通过获取样本分布信息,将少数类样本划分到不同簇群,根据簇群信息量为每个区域分配不同合成份额;少数类样本结合自身权重,生成相应规模的目标样本;通过基于随机森林学习评价训练数据。10组非平衡数据集仿真试验结果表明,DCSMOTE-RF算法对非平衡数据具有较好的预测效果。
文摘针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。
文摘针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。
文摘针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。
文摘针对合成少数类过采样技术等基于近邻值的过采样算法在处理数据类不平衡时,不能根据少数类样本分布情况及时调整模型参数,导致过采样后的数据集引入噪声,并且在原始分布区域上无差别地合成少数类实例造成过拟合等问题,提出了一种特征边界和密度适应的SMOTE算法(SMOTE algorithm for feature boundary and density adaptation,BDA-SMOTE)。该算法为每一个少数类样本规划安全区域,增加少数类的分布,同时基于数据的分布密度动态地调整模型参数,确保生成的数据具有明显的特征边界,防止过拟合。在公开数据集KEEL上与常用的SMOTE算法进行实验对比,结果BDA-SMOTE的性能优于其他基于近邻SMOTE算法。表明该算法较好地扩展了原数据集的分布,同时合成的噪声样本更少。