Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan- dard resolution is to add Steiner points directly at the intersection positions between missing boundaries ...Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan- dard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine. Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the litera- ture. Finally, numerical results are presented to evaluate the performance of the new algorithm.展开更多
Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issue...Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.展开更多
基金Project (No. 60225009) supported by the National Natural ScienceFoundation of China through the National Science Fund for Distin-guished Young Scholars
文摘Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan- dard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine. Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the litera- ture. Finally, numerical results are presented to evaluate the performance of the new algorithm.
文摘Determining the hydrometallurgical cut-off grades specifies the destination of low grade materials and this is subjected to more benefits in mining. Copper production rate is considered as one of the fundamental issues in hydrometallurgical cut-off grades determination. Slags are remarked as one of the main sources of copper. It is not only regarded as a waste but also identified as another resource extracting base metals. Slags are characterized by copper high grade. Thus, slag copper recovery can be led to different cut-off grades and net present value(NPV). The current research scrutinizes the effect of slag recovery by both flotation and hydrometallurgical methods on the hydrometallurgical cut-off grades. For this purpose, the optimum cut-off grade algorithms of hydrometallurgical methods are developed by considering associated environmental parameters, incomes and also the costs. Then, their optimum amounts are calculated with NPV maximization as an objective function. The results indicate that considering slag copper recovery in the hydrometallurgical cut-off grade algorithms reduces the environmental costs caused by slag dumping and leads to more NPV by 9%.