期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
一种RBCC二元进气道变几何方案研究 被引量:5
1
作者 刘晓伟 何国强 刘佩进 《固体火箭技术》 EI CAS CSCD 北大核心 2010年第4期409-413,418,共6页
对工作于引射和亚燃模态的RBCC发动机进气道来说,宽马赫数工作的要求显得尤为突出,使得二元进气道应采用变几何结构。针对内压段收缩比对二元混压式进气道性能的影响,文中开展了理论分析和数值模拟研究,并由此提出了一种将内收缩比调节... 对工作于引射和亚燃模态的RBCC发动机进气道来说,宽马赫数工作的要求显得尤为突出,使得二元进气道应采用变几何结构。针对内压段收缩比对二元混压式进气道性能的影响,文中开展了理论分析和数值模拟研究,并由此提出了一种将内收缩比调节和边界层流动控制相结合的变几何二元进气道方案。研究发现,该方案以低马赫数小范围内较少的流量损失为代价,实现了进气道起动马赫数、阻力的降低和出口总压的增加,改善了进气道的综合性能。 展开更多
关键词 RBCC发动机 二元进气道 变几何进气道 边界层流动控制 数值模拟
下载PDF
Drag reduction via turbulent boundary layer flow control 被引量:12
2
作者 ABBAS Adel BUGEDA Gabriel +5 位作者 FERRER Esteban FU Song PERIAUX Jacques PONS-PRATS Jordi VALERO Eusebio ZHENG Yao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第9期1281-1290,共10页
Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding ... Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding of the flow structures of turbulence.Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures.The combination of simulation,understanding and micro-actuation technologies offers new opportunities to significantly decrease drag,and by doing so,to increase fuel efficiency of future aircraft.The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry,even though it is still at a low technology readiness level(TRL).This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies. 展开更多
关键词 turbulent boundary layer flow control drag reduction skin-friction drag reduction
原文传递
Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators 被引量:8
3
作者 Hao JIANG Jun LIU +2 位作者 Shi-chao LUO Jun-yuan WANG Wei HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第9期745-760,共16页
The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low mag... The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets. 展开更多
关键词 HYPERSONIC Shock wave/turbulent boundary layer interaction Magnetohydrodynamic(MHD) Flow control
原文传递
Shock Wave Induced Separation Control By Streamwise Vortices 被引量:3
4
作者 Ryszard SZWABA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第3期249-253,共5页
Control of shock wave and boundary layer interaction finds still a lot of attention. Methods of this interaction control have been especially investigated in recent decade. This research was mostly concerned with flow... Control of shock wave and boundary layer interaction finds still a lot of attention. Methods of this interaction control have been especially investigated in recent decade. This research was mostly concerned with flows without separation. However, in many applications shock waves induce separation often leads to strong unsteady effects. In this context it is proposed to use streamwise vortices for the interaction control. The results of experimental investigations are presented here. The very promising results were obtained, meaning that the incipient separation was postponed and the separation size was reduced for the higher Mach numbers. The decrease of the RMS of average shock wave oscillation was also achieved. 展开更多
关键词 streamwise vortices separation control boundary layer shock wave
原文传递
Passive Control of Transonic Flow Fields with Shock Wave Using Non-equilibrium Condensation and Porous Wall 被引量:1
5
作者 MasanoriTanaka Shigerumatsuo +3 位作者 ToshiakiSetoguchi Kenjikaneko Heuy-DongKim ShenYu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第2期126-131,共6页
When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing f... When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall. 展开更多
关键词 compressible flow non-equilibrium condensation boundary layer flow control.
原文传递
Recent advances in active control of turbulent boundary layers 被引量:3
6
作者 ZHOU Yu BAI HongLei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第7期1289-1295,共7页
In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag a... In this article,we review the recent progress in active control of a turbulent boundary layer for skin-friction drag reduction.Near-wall coherent structures,which are closely associated with large skin-friction drag and are thus often the target to be manipulated,are discussed briefly,providing a rationale of various control strategies.Open-and closed-loop controls are extensively reviewed,largely focusing on techniques and drag-reduction mechanisms.Finally,some concluding remarks are given. 展开更多
关键词 TURBULENCE boundary layer active control
原文传递
Shock Wave Smearing by Passive Control 被引量:3
7
作者 Piotr DOERFFER Oskar SZULC Rainer BOHNING 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第1期43-47,42,共6页
Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. De... Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction. 展开更多
关键词 transonic flows shock wave boundary layer interaction passive control.
原文传递
Entrance Effects in Microchannel Gas Flow
8
作者 T.Lewandowski S.Jebauer +1 位作者 J.Czerwinska P.Doerffer 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第4期345-352,共8页
Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For thatpurpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions ... Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For thatpurpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions whichrise in such configuration are related to the existence of optimal size of the holes and the influence of microscalephenomena on the global flow patterns. This paper concentrates on the issue of the entrance effects on the microchannelflow. It is shown that mass flow rate is only insignificantly influenced by slip effects. Global parameterssuch as pressure difference and geometrical shape in more pronounced way alter flow behavior. In this paper weconcentrate on the numerical investigation of the microchannel flow for Kn < 0.01 and Re < 500. The channellength is finite. Hence, entrance and outlet effects on microchannel flow can be studied. 展开更多
关键词 perforated plates microchanneis gas flow simulations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部