As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d...As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.展开更多
This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and ...This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and transition of 43×43 computational grids,a coordinate transformation is put up from physical panel to computational panel. Several zero turbulent models are computed comparatively. The results are credible when comparing with the previous methods.展开更多
The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance ...The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times.展开更多
Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction...Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction but also for heat-transfer which affects the blade cooling design. The present work presents a novel and non-intrusive measurement technique to detect the transition, based on acoustic concepts. The reliability of the technique was investigated by means of boundary layer measurements over a fiat plate in subsonic flow conditions. After a preliminary assessment with a conventional Preston tube, a row of microphones were installed along the plate to correlate transition pressure fluctuations. To provide a comprehensive representation of the experiment, dedicated measurements with a fast response aerodynamic pressure probe were performed to determine the turbulence intensity and the dissipation rate upstream of the flat plate. The experimental results were systematically compared with calculations performed with three different computational fluid dynamics solvers (ANSYS-Fluent, ANSYS-CFX, OpenFOAM) and using both the k-k1-ω and the γ-Reθ transition models. Results show a fair agreement between CFD (computational fluid dynamics) predictions and the acoustic technique, suggesting that this latter might represent an interesting alternative option for transition measurements.展开更多
The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the ...The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the process of data analyzing including integration technique. The authors present their own experiences gathered during many years of utilizing the current meter method for discharge measurement in many hydropower plants. They have developed the special integration techniques using the progressive numerical algorithms. The techniques differ from the recommendations contained in the relevant international standards. The authors' own software for calculating the discharge from the measured local velocity distribution (obtained using current meters) adopts advanced spline functions, the so-called NURBS (non-uniform rational B-splines). Nowadays, this kind of splines is commonly used in modeling of the complex geometrical shapes because of their smoothness. It is assessed that it represents much better quality of interpolation than the classic spline functions (classic cubic spline technique). Particularly, the better properties of the NURBS splines can be observed for velocity profile area characterized by very strong velocity gradients where boundary layers meet the core regions of the flow (mainstream). In the developed software the boundary layer thickness and exponent of von Karman function is calculated in accordance with the ISO 3354 standard. The software has been successfully used during many performance tests of the hydraulic turbines in Poland for several years. Paper presents the results of flow rate measurements for two different flow systems of Kaplan turbines. First case concerns the application of the current meters in a long circular penstock whereas the second one in short rectangular turbine intake. A comparative analysis of three flow calculation procedures applied for these two cases is presented in the paper-(1) the integration procedure according to the ISO 3354 standard; (2) the integration procedure based on the NS (natural splines); and (3) the integration procedure based on the NURBS. The results obtained using these three procedures for the first case (intake via long circular penstock) were compared with the results of discharge measurements conducted using the pressure-time method.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51309040, 51379025), and the Fundamental Research Funds for the Central Universities (Nos. 3132014224, 3132014318).
文摘As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.
文摘This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and transition of 43×43 computational grids,a coordinate transformation is put up from physical panel to computational panel. Several zero turbulent models are computed comparatively. The results are credible when comparing with the previous methods.
文摘The comparative study between unsteady flow models in alluvial streams shows a chaotic residue as for the choices of a forecasting model. The difficulty resides in the choice of the expressions of friction resistance and sediment transport. Three types of mathematical models were selected. Models of type one and two are fairly general, but require a considerable number of boundary conditions, which related to each size range of sediments. It can be a handicap during rivers studies which are not very well followed in terms of experimental measurements. Also, the use of complex models is not always founded. But then, the model of type three requires a limited number of boundary conditions and solves only a system of three equations at each time step. It allows a considerable saving in calculating times.
文摘Different methods to detect boundary layer transition are investigated within the scope of this paper. Laminar and turbulent boundary layers exhibit a significantly different behavior, not only regarding skin friction but also for heat-transfer which affects the blade cooling design. The present work presents a novel and non-intrusive measurement technique to detect the transition, based on acoustic concepts. The reliability of the technique was investigated by means of boundary layer measurements over a fiat plate in subsonic flow conditions. After a preliminary assessment with a conventional Preston tube, a row of microphones were installed along the plate to correlate transition pressure fluctuations. To provide a comprehensive representation of the experiment, dedicated measurements with a fast response aerodynamic pressure probe were performed to determine the turbulence intensity and the dissipation rate upstream of the flat plate. The experimental results were systematically compared with calculations performed with three different computational fluid dynamics solvers (ANSYS-Fluent, ANSYS-CFX, OpenFOAM) and using both the k-k1-ω and the γ-Reθ transition models. Results show a fair agreement between CFD (computational fluid dynamics) predictions and the acoustic technique, suggesting that this latter might represent an interesting alternative option for transition measurements.
文摘The velocity area method belongs to the group of primary methods for discharge measurement in hydropower plants. The measurements require an appropriate application of measuring devices and carrying out correctly the process of data analyzing including integration technique. The authors present their own experiences gathered during many years of utilizing the current meter method for discharge measurement in many hydropower plants. They have developed the special integration techniques using the progressive numerical algorithms. The techniques differ from the recommendations contained in the relevant international standards. The authors' own software for calculating the discharge from the measured local velocity distribution (obtained using current meters) adopts advanced spline functions, the so-called NURBS (non-uniform rational B-splines). Nowadays, this kind of splines is commonly used in modeling of the complex geometrical shapes because of their smoothness. It is assessed that it represents much better quality of interpolation than the classic spline functions (classic cubic spline technique). Particularly, the better properties of the NURBS splines can be observed for velocity profile area characterized by very strong velocity gradients where boundary layers meet the core regions of the flow (mainstream). In the developed software the boundary layer thickness and exponent of von Karman function is calculated in accordance with the ISO 3354 standard. The software has been successfully used during many performance tests of the hydraulic turbines in Poland for several years. Paper presents the results of flow rate measurements for two different flow systems of Kaplan turbines. First case concerns the application of the current meters in a long circular penstock whereas the second one in short rectangular turbine intake. A comparative analysis of three flow calculation procedures applied for these two cases is presented in the paper-(1) the integration procedure according to the ISO 3354 standard; (2) the integration procedure based on the NS (natural splines); and (3) the integration procedure based on the NURBS. The results obtained using these three procedures for the first case (intake via long circular penstock) were compared with the results of discharge measurements conducted using the pressure-time method.