The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An...The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An improved CFD/CSD coupled system is designed, including an interpolation method and an improved loosely coupled algorithm. The interpolation method based on boundary element method (BEM) is developed to transfer aerodynamic loads and structural displacements between CFD and CSD grid systems, it can be universally used in fluid structural interaction solution by keeping energy conservation. The improved loosely coupled algo-rithm is designed, thus it improves the computational accuracy and efficiency. The new interface is performed on the two-dimensional (2-D) extrapolation and the aeroelastie response of AGARD445.6 wing. Results show that the improved interface has a superior accuracy.展开更多
This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation bas...This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.展开更多
The asymptotic distributions are exactly solved for linearly independent solutions considering problem of the second order and for the coefficients of asymptotic distribution the recurrent formulas are obtained. Furth...The asymptotic distributions are exactly solved for linearly independent solutions considering problem of the second order and for the coefficients of asymptotic distribution the recurrent formulas are obtained. Further, using obtained recurrent formulas the necessary and sufficient conditions for almost regularity of spectral problem for the equation of the second order is proved.展开更多
Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit freque...Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.展开更多
As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both b...As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.展开更多
This paper gives an introduction into the dissipation integral method. The general integral equations for the three-dimensional case are derived. It is found that for a practical calculation algorithm the integral mom...This paper gives an introduction into the dissipation integral method. The general integral equations for the three-dimensional case are derived. It is found that for a practical calculation algorithm the integral momentum equation and the integral energy equation are most useful. Using two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown. Test cases for two- and three-dimensional boundary layers are analysed and discussed. The paper concludes with a discussion of the advantages and limits of dissipation integral methods.展开更多
This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step ap...This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step approach and multigrid algorithm are adopted to improve the computational efficiency of the baseline scheme.Numerical results for the transonic unsteady flow in a channel bump and the unsteady flow in a flat plate cascade and the VKI cascade are presented.展开更多
基金Supported by the Ph.D.Program Foundation of Ministry of Education of China (20070699054)~~
文摘The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An improved CFD/CSD coupled system is designed, including an interpolation method and an improved loosely coupled algorithm. The interpolation method based on boundary element method (BEM) is developed to transfer aerodynamic loads and structural displacements between CFD and CSD grid systems, it can be universally used in fluid structural interaction solution by keeping energy conservation. The improved loosely coupled algo-rithm is designed, thus it improves the computational accuracy and efficiency. The new interface is performed on the two-dimensional (2-D) extrapolation and the aeroelastie response of AGARD445.6 wing. Results show that the improved interface has a superior accuracy.
文摘This paper discusses the application of the boundary contour method fo r resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirc hhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points,even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corne r point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.
文摘The asymptotic distributions are exactly solved for linearly independent solutions considering problem of the second order and for the coefficients of asymptotic distribution the recurrent formulas are obtained. Further, using obtained recurrent formulas the necessary and sufficient conditions for almost regularity of spectral problem for the equation of the second order is proved.
基金supported by the National Science Foundation of China (grant Nos. 41271024, 41444430204, and J1210065)the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2016-266 and lzujbky2016-270)
文摘Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.
基金Foundation item: Supported by the National Natural Science Foundation of China(50608036)
文摘As a boundary-type meshless method, the singular hybrid boundary node method(SHBNM) is based on the modified variational principle and the moving least square(MLS) approximation, so it has the advantages of both boundary element method(BEM) and meshless method. In this paper, the dual reciprocity method(DRM) is combined with SHBNM to solve Poisson equation in which the solution is divided into particular solution and general solution. The general solution is achieved by means of SHBNM, and the particular solution is approximated by using the radial basis function(RBF). Only randomly distributed nodes on the bounding surface of the domain are required and it doesn't need extra equations to compute internal parameters in the domain. The postprocess is very simple. Numerical examples for the solution of Poisson equation show that high convergence rates and high accuracy with a small node number are achievable.
文摘This paper gives an introduction into the dissipation integral method. The general integral equations for the three-dimensional case are derived. It is found that for a practical calculation algorithm the integral momentum equation and the integral energy equation are most useful. Using two different sets of mean velocity profiles the hyperbolical character of a dissipation integral method is shown. Test cases for two- and three-dimensional boundary layers are analysed and discussed. The paper concludes with a discussion of the advantages and limits of dissipation integral methods.
文摘This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step approach and multigrid algorithm are adopted to improve the computational efficiency of the baseline scheme.Numerical results for the transonic unsteady flow in a channel bump and the unsteady flow in a flat plate cascade and the VKI cascade are presented.