It is conjectured that the manifold with nonnegative Ricci curvature and weaked bounded geometry is of finite topological type, if The paper partially solves this conjecture. In the same time, the paper also discusses...It is conjectured that the manifold with nonnegative Ricci curvature and weaked bounded geometry is of finite topological type, if The paper partially solves this conjecture. In the same time, the paper also discusses the volume growth of a manifold with asymptotically nonnegative Ricci curvature.展开更多
t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with ...t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.展开更多
A spatial pyramidal cross-correlation based on interrogation area sub-division is introduced to improve the measurement resolution in particle image velocimetry(PIV). The high-resolution velocity can be achieved with ...A spatial pyramidal cross-correlation based on interrogation area sub-division is introduced to improve the measurement resolution in particle image velocimetry(PIV). The high-resolution velocity can be achieved with a velocity prediction model via coarse cross-correlation. The prediction formula is deduced from the frequency response of the moving average(MA). The performance of this method was assessed using synthetically generated images of sinusoidal shear flow, two-dimensional vortical cellular flow, and homogeneous turbulence. A real PIV experiment of turbulent boundary layer was used to evaluate the new method. The results indicate that the spatial pyramid cross-correlation can robustly increase the spatial resolution.展开更多
We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder...We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder with the same area under this flow. We use the geometric properties and the maximal principle to obtain gradient and curvature estimates, leading to long-time existence of the flow and convergence to a constant mean curvature surface.展开更多
We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(r...We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature.展开更多
文摘It is conjectured that the manifold with nonnegative Ricci curvature and weaked bounded geometry is of finite topological type, if The paper partially solves this conjecture. In the same time, the paper also discusses the volume growth of a manifold with asymptotically nonnegative Ricci curvature.
基金Project supported by the National Natural Science Foundation of China(Nos.10831008,11131007)
文摘t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
基金supported by the National Natural Science Foundation of China(Grant Nos.11702302,51406127&11572331)the Fundamental Research Funds for Central Universities(YWF-16-JCTD-A-05)the Natural Science Foundation of Jiangsu Province(Grant No.BK20140344)
文摘A spatial pyramidal cross-correlation based on interrogation area sub-division is introduced to improve the measurement resolution in particle image velocimetry(PIV). The high-resolution velocity can be achieved with a velocity prediction model via coarse cross-correlation. The prediction formula is deduced from the frequency response of the moving average(MA). The performance of this method was assessed using synthetically generated images of sinusoidal shear flow, two-dimensional vortical cellular flow, and homogeneous turbulence. A real PIV experiment of turbulent boundary layer was used to evaluate the new method. The results indicate that the spatial pyramid cross-correlation can robustly increase the spatial resolution.
文摘We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that a rotationally symmetric n-dimensional hypersurface in R^(n+1)between two parallel hyperplanes will converge to a cylinder with the same area under this flow. We use the geometric properties and the maximal principle to obtain gradient and curvature estimates, leading to long-time existence of the flow and convergence to a constant mean curvature surface.
基金supported by National Natural Science Foundation of China(Grant No.11171253)the Natural Science Foundation of Ministry of Education of Anhui Province(Grant No.KJ2012B197)
文摘We prove that for a compact Finsler manifold M with nonnegative weighted Ricci curvature,if its first closed(resp.Neumann)eigenvalue of Finsler-Laplacian attains the sharp lower bound,then M is isometric to a circle(resp.a segment).Moreover,a lower bound of the first eigenvalue of Finsler-Laplacian with Dirichlet boundary condition is also estimated.These generalize the corresponding results in recent literature.