In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in...In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.展开更多
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ...This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.展开更多
This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The repres...This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The representation of the pipe is made by MEF using one fmite element in the cylindrical panel formulated from the theory of equivalent discrete layers (Layerwise theory), proposed by J. N. Reddy. The soil is represented by elastic continum infimite or semi-infinite and modeled using boundary elements with special curved surface, associated with cylindrical panel used to represent the soil-structure interaction within the soil, especially at the contact surface with the pipe.展开更多
Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding...Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding of fluid-structure interaction. In order to validate the method, two simulation cases: oscillating circular cylinder at low K-C number and two degrees of freedom oscillating cylinder are carded out first and the results are in good agreement with the previous re:searches. In the oscillating airfoil simulation, it is found that the reduced velocity U^*. is a very sensitive factor and especially U^*-2.8 is the critical stable boundary in the present work. The method shows the predominance of time saving in computational process for such a complicated fluid-structure interac- tion problem.展开更多
Flux transfer events (FTEs) are local transient magnetic reconnections at the magnetopause (MP) that provide channels for transport of solar wind energy and plasma into the magnetosphere (MSP). All current theor...Flux transfer events (FTEs) are local transient magnetic reconnections at the magnetopause (MP) that provide channels for transport of solar wind energy and plasma into the magnetosphere (MSP). All current theoretical models suggest that FTEs are open-flux ropes; however, global simulations show that they contain both open and closed magnetic fields. To clarify this to- pology, we analyzed 441 events observed by THEMIS and investigated their magnetic topologies. Only one type of open field line was detected in most magnetosheath (MSH) FTEs, independent of the polarity of the Bn bipolar signatures. Newly formed MSH field lines were also observed. In the all MP boundary layers FTEs and most MSP FTEs, multiple types of topologies were observed, irrelevant to the Bn bipolar polarity. Closed field lines were found in all MP boundary layers and MSP FTEs. Meanwhile very few boundary FTEs contained the newly formed MSH flux. In some situations, only closed field lines were seen in MSP FTEs, which are referred to as the fossil FTEs. These results, which largely differ from the traditional view, demonstrate the existence of complex magnetic topologies in FTEs. Based on these results, we propose a new 3D FTE picture to modify the current FTE models.展开更多
Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect ...Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect study on the subject is rarely found in the literature due to the complexity and the nonlinear multiscale nature of turbulent flows. The primary goal of this research is to explore the motion and evolution of coherent structures during late transition, whose structure is much more ordered than that of fully developed turbulence, and their relationship with events of bursting and intermittency based on a verified high-order direct numerical simulation(DNS). The computation was carried out on a flat plate at Reynolds number 1000(based on the inflow displacement thickness) with an inflow Mach number 0.5. It is concluded that bursting and intermittency detected by stationary sensors in a transitional boundary layer actually result from the passage and development of vortical structures, and it would be more rational to design transitional turbulence models based on modelling the moving vortical structures rather than the statistical features and experimental experiences.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.40974069)PetroChina Innovation Foundation(Grant No.2009D-5006-03-01)+1 种基金National Key Basic Research Development Program(GrantNo.2007CB209601)National Major Science and Technology Program(Grant Nos.2008ZX05010-002 and 2008ZX05024-001)
文摘In western China seismic wave fields are very complicated and have low signal to noise ratio.In this paper,we focus on complex wave field research by forward modeling and indicate that density should not be ignored in wave field simulation if the subsurface physical properties are quite different.We use the acoustic wave equation with density in the staggered finite-difference method to simulate the wave fields.For this purpose a complicated geologic structural model with rugged surfaces,near-surface low-velocity layers,and high-velocity outcropping layers was designed.Based on the instantaneous wave field distribution,we analyzed the mechanism forming complex wave fields.The influence of low velocity layers on the wave field is very strong.A strong waveguide occurs between the top and base of a low velocity layer,producing multiples which penetrate into the earth and form strong complex wave fields in addition to reflections from subsurface interfaces.For verifying the correctness of the simulated wave fields,prestack depth migration was performed using different algorithms from the forward modeling.The structure revealed by the stacked migration profile is same as the known structure.
文摘This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder.
文摘This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The representation of the pipe is made by MEF using one fmite element in the cylindrical panel formulated from the theory of equivalent discrete layers (Layerwise theory), proposed by J. N. Reddy. The soil is represented by elastic continum infimite or semi-infinite and modeled using boundary elements with special curved surface, associated with cylindrical panel used to represent the soil-structure interaction within the soil, especially at the contact surface with the pipe.
基金supported by NSFC under grants 50736007 and 50136010
文摘Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding of fluid-structure interaction. In order to validate the method, two simulation cases: oscillating circular cylinder at low K-C number and two degrees of freedom oscillating cylinder are carded out first and the results are in good agreement with the previous re:searches. In the oscillating airfoil simulation, it is found that the reduced velocity U^*. is a very sensitive factor and especially U^*-2.8 is the critical stable boundary in the present work. The method shows the predominance of time saving in computational process for such a complicated fluid-structure interac- tion problem.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41274167 & 41374166)the ESA 2013–2014 Guest Investigator Programworking group sponsored by ISSI Bern
文摘Flux transfer events (FTEs) are local transient magnetic reconnections at the magnetopause (MP) that provide channels for transport of solar wind energy and plasma into the magnetosphere (MSP). All current theoretical models suggest that FTEs are open-flux ropes; however, global simulations show that they contain both open and closed magnetic fields. To clarify this to- pology, we analyzed 441 events observed by THEMIS and investigated their magnetic topologies. Only one type of open field line was detected in most magnetosheath (MSH) FTEs, independent of the polarity of the Bn bipolar signatures. Newly formed MSH field lines were also observed. In the all MP boundary layers FTEs and most MSP FTEs, multiple types of topologies were observed, irrelevant to the Bn bipolar polarity. Closed field lines were found in all MP boundary layers and MSP FTEs. Meanwhile very few boundary FTEs contained the newly formed MSH flux. In some situations, only closed field lines were seen in MSP FTEs, which are referred to as the fossil FTEs. These results, which largely differ from the traditional view, demonstrate the existence of complex magnetic topologies in FTEs. Based on these results, we propose a new 3D FTE picture to modify the current FTE models.
基金supported by the Department of Mathematics at University of Texas at Arlington
文摘Experimental and numerical investigations have suggested the existence of a strong correlation between the passage of coherent structures and events of bursting and intermittency. However, a detailed cause-and-effect study on the subject is rarely found in the literature due to the complexity and the nonlinear multiscale nature of turbulent flows. The primary goal of this research is to explore the motion and evolution of coherent structures during late transition, whose structure is much more ordered than that of fully developed turbulence, and their relationship with events of bursting and intermittency based on a verified high-order direct numerical simulation(DNS). The computation was carried out on a flat plate at Reynolds number 1000(based on the inflow displacement thickness) with an inflow Mach number 0.5. It is concluded that bursting and intermittency detected by stationary sensors in a transitional boundary layer actually result from the passage and development of vortical structures, and it would be more rational to design transitional turbulence models based on modelling the moving vortical structures rather than the statistical features and experimental experiences.