By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach s...By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金Supported by the Research Project of Bozhou Teacher’s College(BSKY0805)Supported by the Natural Science Research Project of Anhui Province(KJ2009B093)
文摘By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.