提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极...提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极坐标变换法和PART方法(Projection and Angular&Radial Transformation)进行克服。与解析解和LMS Virtual.Lab商业软件的结果比较验证了方法的正确性,并对比分析了奇异积分与近奇异积分对计算精度的影响。采用低频快速多极子方法以加速常规边界元法的计算效率,计算分析了计算复杂度,并成功实现了34万自由度大规模问题的计算。结果表明,近奇异积分问题主要由超奇异核函数引起,对计算精度的影响不容忽略;快速多极边界元法的精度与常规边界元法一致,但计算复杂度要远低于后者。展开更多
文摘提出了综合处理Burton-Miller方法所导致的奇异积分与近奇异积分问题的数值求积方法,以此改进了基于常量元素的常规边界元和低频快速多极边界元方法。对于奇异积分问题,利用Hadamard有限积分方法进行解决;对于近奇异积分问题,则采用极坐标变换法和PART方法(Projection and Angular&Radial Transformation)进行克服。与解析解和LMS Virtual.Lab商业软件的结果比较验证了方法的正确性,并对比分析了奇异积分与近奇异积分对计算精度的影响。采用低频快速多极子方法以加速常规边界元法的计算效率,计算分析了计算复杂度,并成功实现了34万自由度大规模问题的计算。结果表明,近奇异积分问题主要由超奇异核函数引起,对计算精度的影响不容忽略;快速多极边界元法的精度与常规边界元法一致,但计算复杂度要远低于后者。