期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高分辨率遥感图像中建筑物提取的边界精细化卷积神经网络
1
作者 高爱 杨光 《长江信息通信》 2023年第12期6-9,共4页
随着遥感图像解译在城乡规划和数字化城市建设等领域的广泛应用,对遥感图像中的建筑物进行完整地、准确地检测具有非常重要的研究意义和应用价值。近年来,深度学习技术被广泛应用于遥感图像中的建筑物提取。然而,如何从高分辨率遥感图... 随着遥感图像解译在城乡规划和数字化城市建设等领域的广泛应用,对遥感图像中的建筑物进行完整地、准确地检测具有非常重要的研究意义和应用价值。近年来,深度学习技术被广泛应用于遥感图像中的建筑物提取。然而,如何从高分辨率遥感图像中完全地、准确地提取建筑物仍然面临着巨大的挑战。因此,文章提出了一种边界精细化的建筑物提取方法,命名为BR-Mask R-CNN。首先,文章采用多特征融合网络ResNeXt101-FPN作为主干特征提取网络,以提高小型建筑物的提取精度。然后,利用边界精细化掩码分支将边界保护分支和Mask分支集成起来,以保护建筑物的边界信息,并实现更加准确的掩码预测。最后,文章在两个公开的建筑物提取数据集上验证了所提出方法的有效性,实验结果表明该文的方法在许多评价指标上都有较好的效果。 展开更多
关键词 建筑物提取 边界精细化掩码分支 高分辨率遥感图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部