This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on th...This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.展开更多
文摘This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids.