The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianji...The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianjin Hebei experienced a seven-day extreme haze pollution episode with peak PM2.5(particulate matter(PM)with an aerodynamic diameter≤2.5μm)concentration of 727μg m 3.Considering the in uence of meteorological conditions on pollu-tant evolution,the e ects of varying initial conditions and lateral boundary conditions(LBCs)of the WRF-Chem model on PM2.5 concentration variation were investigated through ensemble methods.A control run(CTRL)and three groups of ensemble experiments(INDE,BDDE,INBDDE)were carried out based on difierent initial conditions and LBCs derived from ERA5 reanalysis data and its 10 ensemble members.The CTRL run reproduced the meteorological conditions and the overall life cycle of the haze event reasonably well,but failed to capture the intense oscillation of the instantaneous PM2.5 concentration.However,the ensemble forecasting showed a considerable advantage to some extent.Compared with the CTRL run,the root-mean-square error(RMSE)of PM2.5 concentration decreased by 4.33%,6.91%,and 8.44%in INDE,BDDE and INBDDE,respectively,and the RMSE decreases of wind direction(5.19%,8.89%and 9.61%)were the dominant reason for the improvement of PM2.5 concentration in the three ensemble experiments.Based on this case,the ensemble scheme seems an e ective method to improve the prediction skill of wind direction and PM2.5 concentration by using the WRF-Chem model.展开更多
Based on the real case of a frontal precipitation process affecting South China, 27 controlled numerical experiments was made for the effects of hydrostatic and non-hydrostatic effects, different driving models, combi...Based on the real case of a frontal precipitation process affecting South China, 27 controlled numerical experiments was made for the effects of hydrostatic and non-hydrostatic effects, different driving models, combinations of initial/boundary conditions, updates of lateral values and initial time levels of forecast, on model predictions. Features about the impact of initial/boundary conditions on mesoscale numerical weather prediction (NWP) model are analyzed and discussed in detail. Some theoretically and practically valuable conclusions are drawn. It is found that the overall tendency of mesoscale NWP models is governed by its driving model, with the initial conditions showing remarkable impacts on mesoscale models for the first I0 hours of the predictions while leaving lateral boundary conditions to take care the period beyond; the latter affect the inner area of mesoscale predictions mainly through the propagation and movement of weather signals (waves) of different time scales; initial values of external model parameters such as soil moisture content may affect predictions of more longer time validity, while fast signals may be filtered away and only information with time scale 4 times as large as or more than the updated period of boundary values may be introduced, through lateral boundary, to mesoseale models, etc. Some results may be taken as important guidance on mesoseale model and its data a.ssimilation developments of the future.展开更多
A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulation...A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulations show that achieving a more efficient use of large-scale atmospheric variations of the global model and retaining small-scale features in the regional model are critical for better forecasting PSR events.For precipitation,the larger the magnitude and longer the lead time,the more significant the improvement-especially for the methods of spectral nudging and updated initial conditions.In terms of large-scale circulation,the anomaly correlation coefficient can be distinctly improved for 1-5-day lead times by adopting the spectral nudging technique,whereas lateral boundary filtering results in marked improvement for 7-11-day lead times.展开更多
An international workshop on urban meteorology. observation and modeling, was jointly held by the Institute of Urban Meteorology ( China ) and the National Center for Atmospheric Research (US) in Beijing, October,...An international workshop on urban meteorology. observation and modeling, was jointly held by the Institute of Urban Meteorology ( China ) and the National Center for Atmospheric Research (US) in Beijing, October, 2004. The workshop was intended to share recent progress in urban meteorological research, discuss issues related to research and development priorities faced by diverse Chinese institutions, and explore collaboration opportunities between Chinese and US research institutions. This article summarizes the major issues discussed at the workshop, including observation on urban boundary layer, urban landuse modeling, socio-economic impacts of weather and climates, and air quality in urban environment. It includes recommendations for future urban meteorology observational and modeling research, and potential collaborative opportunities between China and US.展开更多
基金supported by the National Basic Research(973)Program of China [grant number2015CB954102]the National Natural Science Foundation of China [grant number 41475043]the National Key R&D Program of China [grant number 2018YFC1507403]
文摘The North China Plain often su ers heavy haze pollution events in the cold season due to the rapid industrial development and urbanization in recent decades.In the winter of 2015,the megacity cluster of Beijing Tianjin Hebei experienced a seven-day extreme haze pollution episode with peak PM2.5(particulate matter(PM)with an aerodynamic diameter≤2.5μm)concentration of 727μg m 3.Considering the in uence of meteorological conditions on pollu-tant evolution,the e ects of varying initial conditions and lateral boundary conditions(LBCs)of the WRF-Chem model on PM2.5 concentration variation were investigated through ensemble methods.A control run(CTRL)and three groups of ensemble experiments(INDE,BDDE,INBDDE)were carried out based on difierent initial conditions and LBCs derived from ERA5 reanalysis data and its 10 ensemble members.The CTRL run reproduced the meteorological conditions and the overall life cycle of the haze event reasonably well,but failed to capture the intense oscillation of the instantaneous PM2.5 concentration.However,the ensemble forecasting showed a considerable advantage to some extent.Compared with the CTRL run,the root-mean-square error(RMSE)of PM2.5 concentration decreased by 4.33%,6.91%,and 8.44%in INDE,BDDE and INBDDE,respectively,and the RMSE decreases of wind direction(5.19%,8.89%and 9.61%)were the dominant reason for the improvement of PM2.5 concentration in the three ensemble experiments.Based on this case,the ensemble scheme seems an e ective method to improve the prediction skill of wind direction and PM2.5 concentration by using the WRF-Chem model.
基金National Project "973" (Research on Heavy Rain in China) and BMBF of Germany (WTZ- Project CHN01/106)
文摘Based on the real case of a frontal precipitation process affecting South China, 27 controlled numerical experiments was made for the effects of hydrostatic and non-hydrostatic effects, different driving models, combinations of initial/boundary conditions, updates of lateral values and initial time levels of forecast, on model predictions. Features about the impact of initial/boundary conditions on mesoscale numerical weather prediction (NWP) model are analyzed and discussed in detail. Some theoretically and practically valuable conclusions are drawn. It is found that the overall tendency of mesoscale NWP models is governed by its driving model, with the initial conditions showing remarkable impacts on mesoscale models for the first I0 hours of the predictions while leaving lateral boundary conditions to take care the period beyond; the latter affect the inner area of mesoscale predictions mainly through the propagation and movement of weather signals (waves) of different time scales; initial values of external model parameters such as soil moisture content may affect predictions of more longer time validity, while fast signals may be filtered away and only information with time scale 4 times as large as or more than the updated period of boundary values may be introduced, through lateral boundary, to mesoseale models, etc. Some results may be taken as important guidance on mesoseale model and its data a.ssimilation developments of the future.
基金supported by the National Natural Sci ence Foundation of China[grant number 41775097],[grant number 91437221]the National Key Basic Research Program of China[grant number 2012CB417204]the China Specia Fund for Meteorological Research in the Public Interest[grant number GYHY201506002]
文摘A set of methods designed to improve (i.e.extend) the medium-term forecasting of persistent severe rainfall (PSR) events in China using the regional Weather Research and Forecasting model are summarized.Simulations show that achieving a more efficient use of large-scale atmospheric variations of the global model and retaining small-scale features in the regional model are critical for better forecasting PSR events.For precipitation,the larger the magnitude and longer the lead time,the more significant the improvement-especially for the methods of spectral nudging and updated initial conditions.In terms of large-scale circulation,the anomaly correlation coefficient can be distinctly improved for 1-5-day lead times by adopting the spectral nudging technique,whereas lateral boundary filtering results in marked improvement for 7-11-day lead times.
文摘An international workshop on urban meteorology. observation and modeling, was jointly held by the Institute of Urban Meteorology ( China ) and the National Center for Atmospheric Research (US) in Beijing, October, 2004. The workshop was intended to share recent progress in urban meteorological research, discuss issues related to research and development priorities faced by diverse Chinese institutions, and explore collaboration opportunities between Chinese and US research institutions. This article summarizes the major issues discussed at the workshop, including observation on urban boundary layer, urban landuse modeling, socio-economic impacts of weather and climates, and air quality in urban environment. It includes recommendations for future urban meteorology observational and modeling research, and potential collaborative opportunities between China and US.