移动边缘计算(Mobile Edge Computing,MEC)通过将计算任务卸载到边缘服务器,为用户提供了低延时、低能耗的服务,解决了传统云计算的不足。在移动边缘计算中,如何进行卸载决策是提供低延时、低能耗服务的关键技术之一。除此之外,由于无...移动边缘计算(Mobile Edge Computing,MEC)通过将计算任务卸载到边缘服务器,为用户提供了低延时、低能耗的服务,解决了传统云计算的不足。在移动边缘计算中,如何进行卸载决策是提供低延时、低能耗服务的关键技术之一。除此之外,由于无线信道的带宽资源有限,不合理的带宽分配会使用户设备的能耗和延时增加,因此如何进行合理的资源分配也是边缘计算实现的关键。为联合优化时延、能耗与计算资源,本文提出了一个基于蒙特卡洛树搜索的多通道探索算法(Multi-Channel Search Algorithm based on Monte Carlo Tree Search,MCS-MCTS)。首先,以延时和能耗的成本为优化目标,将计算资源分配决策及传输功率建模决策建模为凸优化问题,采用梯度下降法求解最优传输功率分配问题,通过拉格朗日乘子法及卡罗需-库恩-塔克(Karush-Kuhn-Tucker,KKT)条件求解最优计算资源分配问题。随后,通过MCS-MCTS算法处理二进制卸载决策问题,为避免搜索结果陷入局部最优,引入模拟退火算法。数值结果表明,MCS-MCTS算法能在线性相干时间内得到接近最优的卸载决策与资源分配决策,与现有的启发式搜索算法相比,该算法可以在减少时间复杂度和提高系统能量有效性的同时,达到接近最优的性能。展开更多
文摘移动边缘计算(Mobile Edge Computing,MEC)通过将计算任务卸载到边缘服务器,为用户提供了低延时、低能耗的服务,解决了传统云计算的不足。在移动边缘计算中,如何进行卸载决策是提供低延时、低能耗服务的关键技术之一。除此之外,由于无线信道的带宽资源有限,不合理的带宽分配会使用户设备的能耗和延时增加,因此如何进行合理的资源分配也是边缘计算实现的关键。为联合优化时延、能耗与计算资源,本文提出了一个基于蒙特卡洛树搜索的多通道探索算法(Multi-Channel Search Algorithm based on Monte Carlo Tree Search,MCS-MCTS)。首先,以延时和能耗的成本为优化目标,将计算资源分配决策及传输功率建模决策建模为凸优化问题,采用梯度下降法求解最优传输功率分配问题,通过拉格朗日乘子法及卡罗需-库恩-塔克(Karush-Kuhn-Tucker,KKT)条件求解最优计算资源分配问题。随后,通过MCS-MCTS算法处理二进制卸载决策问题,为避免搜索结果陷入局部最优,引入模拟退火算法。数值结果表明,MCS-MCTS算法能在线性相干时间内得到接近最优的卸载决策与资源分配决策,与现有的启发式搜索算法相比,该算法可以在减少时间复杂度和提高系统能量有效性的同时,达到接近最优的性能。