This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge det...This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.展开更多
Background: Edge effects cause changes in bird community richness, abundance, and/or distribution within a landscape, but the avian guilds most influenced can vary among regions. Although Southeast Asia has the highes...Background: Edge effects cause changes in bird community richness, abundance, and/or distribution within a landscape, but the avian guilds most influenced can vary among regions. Although Southeast Asia has the highest rates of deforestation and projected species loss, and is currently undergoing an explosive growth in road infrastructure, there have been few studies of the effects of forest edges on avian communities in this region.Methods: We examined avian community structure in a dry evergreen forest in northeastern Thailand adjacent to a five-lane highway. We evaluated the richness and abundance of birds in 11 guilds at 24 survey points on three parallel transects perpendicular to the edge. At each point, 10-min surveys were conducted during February-August 2014 and March-August 2015. Vegetation measurements were conducted at 16 of the bird survey points and ambient noise was measured at all 24 survey points.Results: We found a strongly negative response to the forest edge for bark-gleaning, sallying, terrestrial, and understory insectivores and a weakly negative response for arboreal frugivore-insectivores, foliage gleaning insectivores, and raptors. Densities of trees and the percentage canopy cover were higher in the interior, and the ambient noise was lower. In contrast, arboreal nectarivore-insectivores responded positively to the forest edge, where there was a higher vegetation cover in the ground layer, a lower tree density, and a higher level of ambient noise.Conclusion: Planners should avoid road development in forests of high conservation value to reduce impacts on biodiversity. Where avoidance is impossible, a number of potential mitigation methods are available, but more detailed assessments of these are needed before they are applied in this region.展开更多
Accuracy and fastness of iris localization are very important in automatic iris recognition. A new fast iris localization algorithm based on improved generalized symmetry transform (GST) was proposed by utilizing (iri...Accuracy and fastness of iris localization are very important in automatic iris recognition. A new fast iris localization algorithm based on improved generalized symmetry transform (GST) was proposed by utilizing (iris) symmetry. GST was improved in three aspects:1) A new distance weight function is defined. The new weight function, which is effective in iris localization, utilized the characteristic of irises that the iris is a circular object and it has one inner boundary and one outer boundary. 2) Each calculation of the symmetry measurement of a pair of symmetry points was performed by taking one point of a pair as the starting point of the transformation. This is the most important reason for fast iris localization,due to which, repetitious computation was largely excluded. 3) A new phase weight function was proposed to adjust GST to locate circle target much better because the inner part of iris is darker than the outer part. The edge map of iris image was acquired and GST was only implemented on the edge point, which decreased computation without loss of accuracy. The modification of distance weight function and phase weight function leads to the accuracy of localization, and other ideas speed up the localization. Experiments show that the average speed of new algorithm is about 7.0—8.5 times as high as traditional ones including integro-differential operator and Hough transform method.展开更多
文摘This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.
基金supported by King Mongkut’s University of Technology Thonburi(Thailand)the National Science and Technology Development Agency(CPMO P-14-51347)supported by the Royal Golden Jubilee Ph.D.Program,Thailand(PHD/0036/2556)
文摘Background: Edge effects cause changes in bird community richness, abundance, and/or distribution within a landscape, but the avian guilds most influenced can vary among regions. Although Southeast Asia has the highest rates of deforestation and projected species loss, and is currently undergoing an explosive growth in road infrastructure, there have been few studies of the effects of forest edges on avian communities in this region.Methods: We examined avian community structure in a dry evergreen forest in northeastern Thailand adjacent to a five-lane highway. We evaluated the richness and abundance of birds in 11 guilds at 24 survey points on three parallel transects perpendicular to the edge. At each point, 10-min surveys were conducted during February-August 2014 and March-August 2015. Vegetation measurements were conducted at 16 of the bird survey points and ambient noise was measured at all 24 survey points.Results: We found a strongly negative response to the forest edge for bark-gleaning, sallying, terrestrial, and understory insectivores and a weakly negative response for arboreal frugivore-insectivores, foliage gleaning insectivores, and raptors. Densities of trees and the percentage canopy cover were higher in the interior, and the ambient noise was lower. In contrast, arboreal nectarivore-insectivores responded positively to the forest edge, where there was a higher vegetation cover in the ground layer, a lower tree density, and a higher level of ambient noise.Conclusion: Planners should avoid road development in forests of high conservation value to reduce impacts on biodiversity. Where avoidance is impossible, a number of potential mitigation methods are available, but more detailed assessments of these are needed before they are applied in this region.
文摘Accuracy and fastness of iris localization are very important in automatic iris recognition. A new fast iris localization algorithm based on improved generalized symmetry transform (GST) was proposed by utilizing (iris) symmetry. GST was improved in three aspects:1) A new distance weight function is defined. The new weight function, which is effective in iris localization, utilized the characteristic of irises that the iris is a circular object and it has one inner boundary and one outer boundary. 2) Each calculation of the symmetry measurement of a pair of symmetry points was performed by taking one point of a pair as the starting point of the transformation. This is the most important reason for fast iris localization,due to which, repetitious computation was largely excluded. 3) A new phase weight function was proposed to adjust GST to locate circle target much better because the inner part of iris is darker than the outer part. The edge map of iris image was acquired and GST was only implemented on the edge point, which decreased computation without loss of accuracy. The modification of distance weight function and phase weight function leads to the accuracy of localization, and other ideas speed up the localization. Experiments show that the average speed of new algorithm is about 7.0—8.5 times as high as traditional ones including integro-differential operator and Hough transform method.