A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repeti...A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repetitive AWFM filtering and subsampling of original image. Then it utilizes multiple heuristic linking criteria between the edge nodes of two adjacent levels and considers the linkage as a fuzzy model, which is trained offline. Through this fuzzy linking model, the boundaries detected at coarse resolution are propagated and refined to the bottom level from the coarse-to fine edge detection. The validation experiment results demonstrate that the proposed approach has superior performance compared with standard fixed resolution detector andprevious multiresolution approach, especially in impulse noise environment.展开更多
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in nongrowth random networks. In this model, we use multiple-edges to represent the connections between vertices and define...We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in nongrowth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its totM number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scMe-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.展开更多
文摘A novel multiresolution pyramidal edge detector, based on adaptive weighted fuzzy mean(AWFM)filtering and fuzzy linking model, is presented in this paper. The algorithm first constructs a pyramidal structure by repetitive AWFM filtering and subsampling of original image. Then it utilizes multiple heuristic linking criteria between the edge nodes of two adjacent levels and considers the linkage as a fuzzy model, which is trained offline. Through this fuzzy linking model, the boundaries detected at coarse resolution are propagated and refined to the bottom level from the coarse-to fine edge detection. The validation experiment results demonstrate that the proposed approach has superior performance compared with standard fixed resolution detector andprevious multiresolution approach, especially in impulse noise environment.
基金Supported by the National Natural Science Foundation of China under Grant No.60874080the Commonweal Application Technique Research Project of Zhejiang Province under Grant No.2012C2316the Open Project of State Key Lab of Industrial Control Technology of Zhejiang University under Grant No.ICT1107
文摘We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in nongrowth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its totM number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scMe-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.