期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于加权最大边缘间距准则MMC的特征选择问题
1
作者 董乃铭 洪振杰 《温州大学学报(自然科学版)》 2014年第1期25-30,共6页
特征选择是模式识别经典而重要的课题.由于不同类别样本之间存在边缘样本点,其分布区域互相交叉重叠,经典的MMC(Maximize Marginal Criterion)方法简单地采用最大化类中心距离,不利于样本分类.针对此问题,给出了一种基于加权最大边缘间... 特征选择是模式识别经典而重要的课题.由于不同类别样本之间存在边缘样本点,其分布区域互相交叉重叠,经典的MMC(Maximize Marginal Criterion)方法简单地采用最大化类中心距离,不利于样本分类.针对此问题,给出了一种基于加权最大边缘间距准则(加权MMC)并改进了的特征选择算法,该方法考虑了不同类别数据边缘样本点在模式分类中的作用,建立了基于最大边缘间距的新型特征评分准则,提高了边缘样本点在衡量特征判别能力时的作用.在公开数据集PIE和MIT-CBCL3000标准人脸图像库上进行了实验,结果表明,该算法与经典的MMC特征选择算法相比较具有明显的优势. 展开更多
关键词 模式识别 加权MMC 边缘样本点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部