Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this pap...Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this paper proposes a global image reconstruction scheme in ground texture surface using Fourier transform (FT). The lines associated with high-energy frequency components in the spectrum that represent ground texture information can be detected by Hough transform (HT), and the corresponding high-energy frequency components are set to zero. Then the spectrum image is back-transformed into the spatial domain image with inverse Fourier transform (IFT). In the reconstructed image, the main ground texture information has been removed, whereas the surface defects information is preserved. Finally, Canny edge detection is used to extract damage image in the reconstructed image. The experimental results of damage detection for the ground texture surfaces of engineering ceramics have shown that the proposed method is effective.展开更多
基金Supported by National Natural Science Foundation of China (No. 51075296)
文摘Ground textures seriously interfere with the exact identification of grinding damage. The common nondestructive testing techniques for engineering ceramics are limited by their difficulty and cost. Therefore, this paper proposes a global image reconstruction scheme in ground texture surface using Fourier transform (FT). The lines associated with high-energy frequency components in the spectrum that represent ground texture information can be detected by Hough transform (HT), and the corresponding high-energy frequency components are set to zero. Then the spectrum image is back-transformed into the spatial domain image with inverse Fourier transform (IFT). In the reconstructed image, the main ground texture information has been removed, whereas the surface defects information is preserved. Finally, Canny edge detection is used to extract damage image in the reconstructed image. The experimental results of damage detection for the ground texture surfaces of engineering ceramics have shown that the proposed method is effective.