期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于边缘智能的盾构机PLC控制系统扩展模块设计
1
作者 徐坚 王天林 +1 位作者 张军凯 王骥 《中国仪器仪表》 2024年第10期57-60,共4页
为了提高现场端掘进盾构的执行效率和智能化程度,本文将人工智能应用到PLC系统模块中,提出一种基于边缘智能的盾构机PLC控制系统扩展模块设计方案。设计的边缘智能模块部署算法模型,对远端采集的视频数据进行推理。本方案同时具备将结... 为了提高现场端掘进盾构的执行效率和智能化程度,本文将人工智能应用到PLC系统模块中,提出一种基于边缘智能的盾构机PLC控制系统扩展模块设计方案。设计的边缘智能模块部署算法模型,对远端采集的视频数据进行推理。本方案同时具备将结果信息通过通信总线传输给CPU模块的ECN-B总线传输能力,为盾构执行结构的运动调节提供依据,从而提高盾构机的施工效率。本文为盾构施工领域的智能化发展提供了有益的参考。 展开更多
关键词 盾构机 PLC控制系统 边缘计算模块 ECN总线
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
2
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部