期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种应用于云南省外侵物种识别的边缘计算模型
1
作者 罗玲 宋科 +5 位作者 王皓 资彩飞 奉伟 杜铭铭 孙仲享 曹志勇 《湖北农业科学》 2023年第10期212-217,222,共7页
基于MobileNet模型迁移对云南省4种主要外侵物种(鬼针草、喀西茄、水花生和紫茎泽兰)图像进行识别,将宽度倍率为1.0和1.4的MobileNet-v2模型分别应用在本研究数据集上进行试验,分析了MobileNet-v2网络模型识别不稳定的原因,通过增加通... 基于MobileNet模型迁移对云南省4种主要外侵物种(鬼针草、喀西茄、水花生和紫茎泽兰)图像进行识别,将宽度倍率为1.0和1.4的MobileNet-v2模型分别应用在本研究数据集上进行试验,分析了MobileNet-v2网络模型识别不稳定的原因,通过增加通道注意力机制模块、更新激活函数和压缩网络层数对模型进行改进。结果表明,改进后的MobileNet-v2模型识别准确率达96.8%,模型参数量仅为1535093。改进后的MobileNet-v2模型识别准确率高、模型参数量少,适合部署于边缘端,能更好地应用于云南省外侵物种防治领域。 展开更多
关键词 外侵物种 边缘计算模型 MobileNet-v2模型 云南省
下载PDF
基于边缘计算模型的智能视频监控系统的设计 被引量:7
2
作者 曾德生 骆金维 +2 位作者 庞双龙 谢品章 陈晓丹 《智能计算机与应用》 2019年第6期254-261,265,共9页
面对视频监控的应用场景及技术需求,以云计算为代表的集中式数据处理模型在资源需求方面开销较大,过度依赖于云计算中心的网络带宽,在实时性等方面也难于满足视频处理的需求。本文提出一种适用于视频监控场景的边缘计算模型,从计算、网... 面对视频监控的应用场景及技术需求,以云计算为代表的集中式数据处理模型在资源需求方面开销较大,过度依赖于云计算中心的网络带宽,在实时性等方面也难于满足视频处理的需求。本文提出一种适用于视频监控场景的边缘计算模型,从计算、网络带宽和存储3种主要资源为切入点,设计系统架构,在利用边缘节点的计算能力完成视频的预处理,构建Docker容器化平台,采用分级调度策略,降低网络拥塞问题。通过测试,该模型可以有效降低视频监控场景下的计算、存储及网络传输等开销。 展开更多
关键词 边缘计算模型 智能视频监控 Docker容器 调度策略
下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
3
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部