Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit freque...Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.展开更多
In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be usefu...In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.展开更多
基金supported by the National Science Foundation of China (grant Nos. 41271024, 41444430204, and J1210065)the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2016-266 and lzujbky2016-270)
文摘Glacier length is a key morphological element that has many glaciological applications; however, it is often difficult to determine, especially for glaciers that cover larger spatial areas or those that exhibit frequent temporal change. In this paper, we describe a new Arc GIS-based method that can derive glacier flow lines for determining glacier length based on digital elevation model and glacier outlines. This method involves(1) extraction of the highest and lowest points on a glacier,(2) calculation of 10-m contour lines on the glacier from 10 m to 100 m height, and(3) connection of the midpoints of each contour line with the highest and the lowest points in order to create a flow line, which is subsequently smoothed. In order to assess the reliability of this method, we tested the algorithm's results against flow lines calculated using field measurements, analysing data from the Chinese Glacier Inventory, and manual interpretation. These data showed that the new automated method is effective in deriving glacier flow lines when contour lines are relatively large; in particular, when they are between 70 m and 100 m. Nonetheless, a key limitation of the algorithm is the requirement to automatically delete repeated and closed curves in the pre-treatment processes. In addition to calculating glacier flow lines for derivation of glacier length, this method also can be used to effectively determine glacier terminus change.
文摘In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.