期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
西方财政学的一个重要转变——析边际效用学说对西方财政理论的影响 被引量:6
1
作者 张馨 《财政研究》 CSSCI 北大核心 1993年第11期50-55,共6页
作者认为,边际效用学说对西方财政学的发展产生了巨大影响。主要表现在四个方面:一是赋予政府提供的公共服务以价值,使之成为商品性的'公共产品'。这一理论使财政科学第一次成为政治经济学的组成部分,从此人们能够运用经济学的... 作者认为,边际效用学说对西方财政学的发展产生了巨大影响。主要表现在四个方面:一是赋予政府提供的公共服务以价值,使之成为商品性的'公共产品'。这一理论使财政科学第一次成为政治经济学的组成部分,从此人们能够运用经济学的核心原理来说明财政行为。二是边际效用论使得等价交换原则最终适用于公共活动领域。三是边际效用原理运用于财政学,使得有效利用资源的私人经济原则,运用于公共经济,从而使整个社会资源都能按统一的原则加以配置,为公共产品最佳供应问题的解决提供了经济学上的依据。四是边际效用理论的引入,使西方财政学对于财政活动目的分析,从公共需要、政府需要转到个人需要上来。 展开更多
关键词 财政 边际效用学 西方国家
原文传递
A selective overview of feature screening for ultrahigh-dimensional data 被引量:11
2
作者 LIU JingYuan ZHONG Wei LI RunZe 《Science China Mathematics》 SCIE CSCD 2015年第10期2033-2054,共22页
High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional dat... High-dimensional data have frequently been collected in many scientific areas including genomewide association study, biomedical imaging, tomography, tumor classifications, and finance. Analysis of highdimensional data poses many challenges for statisticians. Feature selection and variable selection are fundamental for high-dimensional data analysis. The sparsity principle, which assumes that only a small number of predictors contribute to the response, is frequently adopted and deemed useful in the analysis of high-dimensional data.Following this general principle, a large number of variable selection approaches via penalized least squares or likelihood have been developed in the recent literature to estimate a sparse model and select significant variables simultaneously. While the penalized variable selection methods have been successfully applied in many highdimensional analyses, modern applications in areas such as genomics and proteomics push the dimensionality of data to an even larger scale, where the dimension of data may grow exponentially with the sample size. This has been called ultrahigh-dimensional data in the literature. This work aims to present a selective overview of feature screening procedures for ultrahigh-dimensional data. We focus on insights into how to construct marginal utilities for feature screening on specific models and motivation for the need of model-free feature screening procedures. 展开更多
关键词 correlation learning distance correlation sure independence screening sure joint screening sure screening property ultrahigh-dim
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部