标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时...标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习(Active Label Distribution Learning Based on Marginal Probability Distribution Matching,ALDL-MMD)算法是针对标记分布学习注释成本过高的问题而设计的,以减少训练模型所需的标注数据量,从而降低注释成本。ALDL-MMD算法训练了一个线性回归模型,在保证其训练误差最小的同时,学习一个反映未标记数据上选点需求的稀疏向量,使选点后的训练集和未标记集的数据分布尽量相似,并对这个向量做松弛化处理,以简计算。在多个标记分布数据集上的实验结果表明,在“Canberra Metric”和“Intersection”这两个衡量标记分布的指标上,ALDL-MMD算法优于已有的主动示例选择方法,体现了其在降低注释成本方面的有效性。展开更多
文摘标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习(Active Label Distribution Learning Based on Marginal Probability Distribution Matching,ALDL-MMD)算法是针对标记分布学习注释成本过高的问题而设计的,以减少训练模型所需的标注数据量,从而降低注释成本。ALDL-MMD算法训练了一个线性回归模型,在保证其训练误差最小的同时,学习一个反映未标记数据上选点需求的稀疏向量,使选点后的训练集和未标记集的数据分布尽量相似,并对这个向量做松弛化处理,以简计算。在多个标记分布数据集上的实验结果表明,在“Canberra Metric”和“Intersection”这两个衡量标记分布的指标上,ALDL-MMD算法优于已有的主动示例选择方法,体现了其在降低注释成本方面的有效性。