期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
可加模型的无交叉分位回归曲线与房价问题研究 被引量:4
1
作者 何静 熊巍 田茂再 《数理统计与管理》 CSSCI 北大核心 2015年第4期707-718,共12页
高维数据分析是当前研究的热点话题,而在对其进行分析时,非参数方法由于其灵活,无需对模型进行假定,得到了广泛的发展和认可。其中可加模型不仅能够有效地对变量进行降维,避免"维数灾难"的发生;而且能够得到各个变量的边际效... 高维数据分析是当前研究的热点话题,而在对其进行分析时,非参数方法由于其灵活,无需对模型进行假定,得到了广泛的发展和认可。其中可加模型不仅能够有效地对变量进行降维,避免"维数灾难"的发生;而且能够得到各个变量的边际效应,具有很好的解释性。为了得到更加稳健的估计量,本文考虑利用分位回归方法对可加模型进行估计。分位回归方法由于其能够全面地刻画因变量在各个分位点上的变化趋势,并不受误差分布的限制,使得该方法具有更广泛的应用性。本文综合考虑以上优势,提出局部线性最小化检验函数估计方法和局部线性双核估计方法对可加模型进行估计。并且该方法能够有效地避免可加模型分位回归曲线的交叉问题.蒙特卡洛结果显示,与传统的均值估计法相比,不论误差分布的形式,我们提出的方法更具有优越性。用北京市二手房房价数据进行实证分析,进一步验证了本文提出的估计方法。 展开更多
关键词 可加模型 分位回归方法 局部线性最小化检验函数估计 局部线性双核估计 边际积分方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部