This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tende...This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tended to the average; the DO in 2011 was much higher than that in other years, and the DO in 2006 .was lower than the standard value; the quality risk in six sections was still higher than the standard value in 2007, which was caused by the high concentrations of COD. However, the value of ammonia nitrogen changes was only 40% related to DO and COD.展开更多
In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on...In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.展开更多
The contents of nitrate nitrogen(NO-3-N) in underground water from typical planting areas in Liao river basin were analyzed, so as to provide theoretical basis for rational fertilization and effectively prevent the ...The contents of nitrate nitrogen(NO-3-N) in underground water from typical planting areas in Liao river basin were analyzed, so as to provide theoretical basis for rational fertilization and effectively prevent the NO-3-N content from exceeding standard. The results showed that difference of the contents of NO-3-N in groundwater from different typical planting areas was significant. The highest content of NO-3-N in underground water was 37.4 mg/L from flower-growing region, then 22. 3 mg/L from maize-growing region, 21.9 mg/L from vegetable-growing region, and the lowest content of NO-3-N in underground water was 19.2 mg/L from rice-growing region. Except rice-growing region, the contents of NO-3-N in underground water of the samples in all planting areas were exceeding standard limit; potential health risk still existed in rice-growing region. Accordingly 12.5%-87.5%, 9.4%-75.5%, 17.9%-58.9% and 21.4%-96.0% of the samples were exceeding standard limit in maize growing region, rice-growing region, vegetable-growing region and flower-growing region. The contents of NO-3-N in under-groundwater before the rainy season was higher than that of NO-3-N in under-groundwater after the rainy season at the same depth of the well.展开更多
The acute toxicity data of Cr+ and Hg2+ to the aquatic organisms in Liao River basin was collected and screened. Calculated results of criteria values using popular species sensitivity distribution (SSD) methods w...The acute toxicity data of Cr+ and Hg2+ to the aquatic organisms in Liao River basin was collected and screened. Calculated results of criteria values using popular species sensitivity distribution (SSD) methods were evaluated through data analysis. The comprehensive methodology of emergency water quality standards (EWQSs) was established on the basis of the SSD method of Australia and New Zealand according to the evalu- ation results. The affected fractions of the aquatic organisms were set to be 5 %, 15 %, 30 % and 50 %, corre- sponding to the risk grades of Ⅰ,Ⅱ,Ⅲ and IV, and four-grade EWQSs, respectively. The EWQSs for Cr6+ and Hg2. in the Liao River were derived and the corresponding risk indicators were also proposed. The results showed that the four-grade EWQSs for Cr6+ were 2.85 μg/L, 21.0 μg/L, 161 μg/L and 797 μ/L, respec- tively, and the risk indicators were daphnia (grade Ⅱ ), shrimp (grade Ⅲ), and the bighead fish or tadpole (grade IV). The four-grade EWQSs for Hg2+ were 0.59 μg/L, 2.32 μg/L, 6.25 μg/L and 15.6 μg/L, respective- ly, and the risk indicators were crucian carp or daphnia (grade Ⅱ), shrimp (grade Ⅲ), and worm or crab (grade IV). The results provided valuable information for the risk analysis of sudden ambient water environmen- tal pollution accident.展开更多
The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the ...The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.展开更多
Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requ...Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.展开更多
As a prerequisite for groundwater protection and contamination control, evaluation of groundwater con- tamination risk was the extension of groundwater vulnerability assessment. Based on disaster theory and using shal...As a prerequisite for groundwater protection and contamination control, evaluation of groundwater con- tamination risk was the extension of groundwater vulnerability assessment. Based on disaster theory and using shallow groundwater of the lower reaches of Liaohe River Plain as the study area, we built an evaluation index system and a contamination index model for groundwater contamination risks from the perspectives of intrinsic vulnerability, external stresses, and functional value. We used data acquisition technology (remote sensing) and spatial analysis technology (GIS) to calculate the value of groundwater contamination risks. The spatial distribution of hotspots was obtained by calculating G index. Results show that groundwater contamination is above a mid-level risk in most of the study area. Areas with extreme high risk account for 37.86%, areas with high risk 32.47%, areas with moderate risk 12.07%, areas with light risk 3.17%, and areas with slight risk 14.43%. Hotspots areas are mainly located in central Shenyang City, northwest of Xinmin City, Beizhen City and Liaozhong County. Coldspots are mainly in Panjin City, Yingkou City, Dashiqiao City, Dawa County and Panshan County. The results reflect the spatial distribution and mechanism of groundwater contamination risk in the study area and provide relative references for land use planning and groundwater resource protection in the lower reaches of the Liaohe River Plain.展开更多
As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.Howeve...As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.However,in most cases,model parameters are only determined in a calibration scheme which fits the modeled data to observations,thus significant uncertainties exist in the model parameters.How to quantitatively evaluate the uncertainties in model parameters and the resulting uncertainty impacts on model simulations has always been a question which has attracted much attention.In this study,two methods based on the bootstrap method(specifically,the model-based bootstrap and block bootstrap)are used to analyze the parameter uncertainties in the case of the SWAT(Soil and Water Assessment Tool)model applied to a hydrological simulation of the Dongliao River Watershed.Then,the uncertainty ranges of five sensitivity parameters are obtained.The calculated variation coefficients and the variable parameter contributions show that,among the five parameters,ESCO and CN2 have relatively high uncertainties:the variation coefficients and contribution rates are 23.98 and 70%,14.43 and 18%,respectively.The three remaining parameters have relatively low uncertainties.We compare the two uncertainty ranges of parameters acquired by the two bootstrap methods,and find that the uncertainty ranges of parameters acquired by the block bootstrap are narrower than those acquired by the model-based bootstrap.Further analysis of the effects of parameter uncertainties on the model simulation reveals that the parameter uncertainties have great impacts on results of the model simulation,and in the model calibration stage 60%70%of runoff observations were within the corresponding 95%confidence interval.The uncertainty in the model simulation during the flood season(i.e.the wet period)is relatively higher than that during the dry season.展开更多
基金supported by Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education (KL-PPEC-2010-1)
文摘This paper assesses the quality of Daliao river through Liaohe Park based on the model of GAM for water quality analysis and the monitoring data from 2006 to 2011.The results showed that the value of pH per year tended to the average; the DO in 2011 was much higher than that in other years, and the DO in 2006 .was lower than the standard value; the quality risk in six sections was still higher than the standard value in 2007, which was caused by the high concentrations of COD. However, the value of ammonia nitrogen changes was only 40% related to DO and COD.
基金Supported by National Science and Technology Support Project(2008BAK49B07)~~
文摘In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.
基金Supported by Agricultural Eco-environment Protection Program of Ministry of Agriculture(2110402-201258)~~
文摘The contents of nitrate nitrogen(NO-3-N) in underground water from typical planting areas in Liao river basin were analyzed, so as to provide theoretical basis for rational fertilization and effectively prevent the NO-3-N content from exceeding standard. The results showed that difference of the contents of NO-3-N in groundwater from different typical planting areas was significant. The highest content of NO-3-N in underground water was 37.4 mg/L from flower-growing region, then 22. 3 mg/L from maize-growing region, 21.9 mg/L from vegetable-growing region, and the lowest content of NO-3-N in underground water was 19.2 mg/L from rice-growing region. Except rice-growing region, the contents of NO-3-N in underground water of the samples in all planting areas were exceeding standard limit; potential health risk still existed in rice-growing region. Accordingly 12.5%-87.5%, 9.4%-75.5%, 17.9%-58.9% and 21.4%-96.0% of the samples were exceeding standard limit in maize growing region, rice-growing region, vegetable-growing region and flower-growing region. The contents of NO-3-N in under-groundwater before the rainy season was higher than that of NO-3-N in under-groundwater after the rainy season at the same depth of the well.
基金National Major Programme of Water Pollution Control and Treatment(No.2012ZX07501003-06)
文摘The acute toxicity data of Cr+ and Hg2+ to the aquatic organisms in Liao River basin was collected and screened. Calculated results of criteria values using popular species sensitivity distribution (SSD) methods were evaluated through data analysis. The comprehensive methodology of emergency water quality standards (EWQSs) was established on the basis of the SSD method of Australia and New Zealand according to the evalu- ation results. The affected fractions of the aquatic organisms were set to be 5 %, 15 %, 30 % and 50 %, corre- sponding to the risk grades of Ⅰ,Ⅱ,Ⅲ and IV, and four-grade EWQSs, respectively. The EWQSs for Cr6+ and Hg2. in the Liao River were derived and the corresponding risk indicators were also proposed. The results showed that the four-grade EWQSs for Cr6+ were 2.85 μg/L, 21.0 μg/L, 161 μg/L and 797 μ/L, respec- tively, and the risk indicators were daphnia (grade Ⅱ ), shrimp (grade Ⅲ), and the bighead fish or tadpole (grade IV). The four-grade EWQSs for Hg2+ were 0.59 μg/L, 2.32 μg/L, 6.25 μg/L and 15.6 μg/L, respective- ly, and the risk indicators were crucian carp or daphnia (grade Ⅱ), shrimp (grade Ⅲ), and worm or crab (grade IV). The results provided valuable information for the risk analysis of sudden ambient water environmen- tal pollution accident.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07526-006-04-01)
文摘The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.
基金supported by Natural Science Foundation of China (Grant no.40771204,Grant no. 40801006 and Grant no.40801223)
文摘Xiliaohe River watershed plays an important role in regional and national grain security.With the development of society and economy,water consumption that increased dramatically causes water shortages.Crop water requirement can provide quantitative basis for making regional irrigation scheme.In this study,spring maize water requirement is calculated by using PenmanMonteith formula and spring maize coefficient from May to September at 10 meteorological stations in Xiliaohe River watershed from 1951 to 2005.The variation trend of the spring maize water requirement during the whole growing stage,water requirement in every month,and meteorological influencing factors are obtained by using Mann-Kendall method,and the degree of grey incidence between the water requirement and meteorological influencing factors are shown.The results are the spring maize water requirement during the whole growing stages increases at half of the stations in Xiliaohe River watershed,and are remarkably affected by the water requirement in May.The monthly mean,maximum and minimum air temperature form May to September show an increasing trend in Xiliaohe River watershed in recent 55 years.The monthly mean and minimum air temperature increases notably.The relative humidity,precipitation,wind speed and sunshine show a decreasing trend with variety for different months.The monthly maximum air temperature,wind speed,sunshine and monthly mean air temperature have the highest correlation degree with spring maize water requirement from May to September.
基金National Natural Science Foundation of China(No.40501013)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20122136110003)
文摘As a prerequisite for groundwater protection and contamination control, evaluation of groundwater con- tamination risk was the extension of groundwater vulnerability assessment. Based on disaster theory and using shallow groundwater of the lower reaches of Liaohe River Plain as the study area, we built an evaluation index system and a contamination index model for groundwater contamination risks from the perspectives of intrinsic vulnerability, external stresses, and functional value. We used data acquisition technology (remote sensing) and spatial analysis technology (GIS) to calculate the value of groundwater contamination risks. The spatial distribution of hotspots was obtained by calculating G index. Results show that groundwater contamination is above a mid-level risk in most of the study area. Areas with extreme high risk account for 37.86%, areas with high risk 32.47%, areas with moderate risk 12.07%, areas with light risk 3.17%, and areas with slight risk 14.43%. Hotspots areas are mainly located in central Shenyang City, northwest of Xinmin City, Beizhen City and Liaozhong County. Coldspots are mainly in Panjin City, Yingkou City, Dashiqiao City, Dawa County and Panshan County. The results reflect the spatial distribution and mechanism of groundwater contamination risk in the study area and provide relative references for land use planning and groundwater resource protection in the lower reaches of the Liaohe River Plain.
基金supported by the Major Science and Technology Program for Water Pollution and Treatment of China(Grant No.2012ZX07201-001)
文摘As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.However,in most cases,model parameters are only determined in a calibration scheme which fits the modeled data to observations,thus significant uncertainties exist in the model parameters.How to quantitatively evaluate the uncertainties in model parameters and the resulting uncertainty impacts on model simulations has always been a question which has attracted much attention.In this study,two methods based on the bootstrap method(specifically,the model-based bootstrap and block bootstrap)are used to analyze the parameter uncertainties in the case of the SWAT(Soil and Water Assessment Tool)model applied to a hydrological simulation of the Dongliao River Watershed.Then,the uncertainty ranges of five sensitivity parameters are obtained.The calculated variation coefficients and the variable parameter contributions show that,among the five parameters,ESCO and CN2 have relatively high uncertainties:the variation coefficients and contribution rates are 23.98 and 70%,14.43 and 18%,respectively.The three remaining parameters have relatively low uncertainties.We compare the two uncertainty ranges of parameters acquired by the two bootstrap methods,and find that the uncertainty ranges of parameters acquired by the block bootstrap are narrower than those acquired by the model-based bootstrap.Further analysis of the effects of parameter uncertainties on the model simulation reveals that the parameter uncertainties have great impacts on results of the model simulation,and in the model calibration stage 60%70%of runoff observations were within the corresponding 95%confidence interval.The uncertainty in the model simulation during the flood season(i.e.the wet period)is relatively higher than that during the dry season.