The Cloud Feedback Model Intercomparisons Project (CFMIP) Observation Simulator Package (COSP) is adopted in the Grid-point Atmospheric Model of IAP LASG (GAMIL2) during CFMIP at Phase II to evaluate the model cloud f...The Cloud Feedback Model Intercomparisons Project (CFMIP) Observation Simulator Package (COSP) is adopted in the Grid-point Atmospheric Model of IAP LASG (GAMIL2) during CFMIP at Phase II to evaluate the model cloud fractions in a consistent way with satellite observations. The cloud simulation results embedded in the Atmospheric Model Intercomparison Project (AMIP) control experiment are presented using three satellite simulators: International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Overall, GAMIL2 can produce horizontal distributions of the low cloud fraction that are similar to the satellite observations, and its similarities to the observations on different levels are shown in Taylor diagrams. The discrepancies among satellite observations are also shown, which should be considered during evaluation.展开更多
A plant is stabilized by its root system. In congested urban cities such as Hong Kong, ground trenching is frequently seen due to the installation of utility lines along the roadside. Soil nailing, which involves soil...A plant is stabilized by its root system. In congested urban cities such as Hong Kong, ground trenching is frequently seen due to the installation of utility lines along the roadside. Soil nailing, which involves soil coring in slopes, is a common solution to improve the slope stability. However, both activities inevitably pose a risk to the integrity of any root sys- tems present, and thus reduce the root anchorage. To prevent or minimize such damage, a careful design of the excava- tion/drilling location is of prime importance. Ground penetrating radar (GPR) provides a non-destructive method for locating roots by examining the contrast between the dielectric properties of the roots and the surrounding soil. To examine the perfor- mance of GPR and promote its use in Hong Kong, a test bed was prepared using local materials to create a controlled envi- ronment in which to conduct a series of systematic tests evaluating the performance of a 900 MHz GPR. The reflected radar- grams were subject to the influence of the following factors: size and depth of roots, horizontal distance between roots, and contrast between the root and soil water content. Correlations between root size and a number of waveform parameters were also explored. Limiting values for root size, root embedded depth, horizontal separation distance between roots, and water content contrast between root and soil were obtained. A significant correlation was found between the root diameter and time travel parameter T2 (p〈0.001, t=0.795). Because GPR root detection is highly site-specific, this study provides a local refer- ence for GPR performance in the Hong Kong environment. The findings demonstrate that the 900 MHz GPR is applicable in Hong Kong for the detection of main roots.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2010AA012304)the National Basic Research Program of China (973 Program) (Grant No.2010CB951904)+1 种基金the China Meteorological Administration R &D Special Fund for Public Welfare (meteorology) (Grant No.GYHY201006014)the National Natural Science Foundation of China (Grant Nos. 41023002 and 41005053)
文摘The Cloud Feedback Model Intercomparisons Project (CFMIP) Observation Simulator Package (COSP) is adopted in the Grid-point Atmospheric Model of IAP LASG (GAMIL2) during CFMIP at Phase II to evaluate the model cloud fractions in a consistent way with satellite observations. The cloud simulation results embedded in the Atmospheric Model Intercomparison Project (AMIP) control experiment are presented using three satellite simulators: International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Overall, GAMIL2 can produce horizontal distributions of the low cloud fraction that are similar to the satellite observations, and its similarities to the observations on different levels are shown in Taylor diagrams. The discrepancies among satellite observations are also shown, which should be considered during evaluation.
基金the Research Grants Council of the Hong Kong Special Administrative Region (HKSAR) (Grant Nos. HKUST9/CRF/ 09, HKUST6/CRF/12R)
文摘A plant is stabilized by its root system. In congested urban cities such as Hong Kong, ground trenching is frequently seen due to the installation of utility lines along the roadside. Soil nailing, which involves soil coring in slopes, is a common solution to improve the slope stability. However, both activities inevitably pose a risk to the integrity of any root sys- tems present, and thus reduce the root anchorage. To prevent or minimize such damage, a careful design of the excava- tion/drilling location is of prime importance. Ground penetrating radar (GPR) provides a non-destructive method for locating roots by examining the contrast between the dielectric properties of the roots and the surrounding soil. To examine the perfor- mance of GPR and promote its use in Hong Kong, a test bed was prepared using local materials to create a controlled envi- ronment in which to conduct a series of systematic tests evaluating the performance of a 900 MHz GPR. The reflected radar- grams were subject to the influence of the following factors: size and depth of roots, horizontal distance between roots, and contrast between the root and soil water content. Correlations between root size and a number of waveform parameters were also explored. Limiting values for root size, root embedded depth, horizontal separation distance between roots, and water content contrast between root and soil were obtained. A significant correlation was found between the root diameter and time travel parameter T2 (p〈0.001, t=0.795). Because GPR root detection is highly site-specific, this study provides a local refer- ence for GPR performance in the Hong Kong environment. The findings demonstrate that the 900 MHz GPR is applicable in Hong Kong for the detection of main roots.