以大豆分离蛋白(soybean protein isolate,SPI)为主要原料,将甘油进行改性后制备的生物甘油基聚酯加入到成膜液中制备SPI复合膜,通过对贮藏期间SPI复合膜机械性能、水分含量和甘油迁出率进行跟踪测定,比较分析甘油经改性后制备的增塑剂...以大豆分离蛋白(soybean protein isolate,SPI)为主要原料,将甘油进行改性后制备的生物甘油基聚酯加入到成膜液中制备SPI复合膜,通过对贮藏期间SPI复合膜机械性能、水分含量和甘油迁出率进行跟踪测定,比较分析甘油经改性后制备的增塑剂对SPI复合膜的机械性能稳定性、保水性、甘油迁出率稳定性及微观结构的影响。研究结果表明:与未改性甘油增塑的SPI复合膜相比,改性后制备的机械性能稳定性最高的SPI复合膜为生物甘油基聚酯(生物聚甘油和脂肪酸的质量比为1∶1)增塑的复合膜,其拉伸强度稳定性提高了18.08%,断裂延伸率稳定性提高了34.52%,水蒸气透过系数稳定性提高了14.68%,水分含量稳定性提高了17.02%,甘油迁出率稳定性提高了74.28%,膜体系的紧密性和连续性增强,且其表面形成了致密的空间网状结构。生物甘油基聚酯的添加一定程度上提高了SPI复合包装薄膜的机械性能稳定性,为其更广泛的实际应用提供了重要的理论参考和技术支持。展开更多
提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于...提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。展开更多
By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nan...By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1,500 was obtained. The operating voltage is less than 2 V.展开更多
An X-band AlGaN/GaN high-electron-mobility transistor (HEMT) on SiC substrate with high microwave power performances has been achieved. Its small-signal characteristics with a gate-length of 0.4 μm showed a unity cur...An X-band AlGaN/GaN high-electron-mobility transistor (HEMT) on SiC substrate with high microwave power performances has been achieved. Its small-signal characteristics with a gate-length of 0.4 μm showed a unity current gain cut-off frequency (fT) of 22 GHz and a maximum oscillation frequency (fmax) of 65 GHz. The GaN HEMT device with a gate width of 1 mm exhibited a continuous-wave saturated output power of 10.2 W and a linear gain of 14.8 dB at 8 GHz, and successfully achieved the power-added efficiency (PAE) as high as 69.2%, which is very suitable for X-band power applications.展开更多
文摘以大豆分离蛋白(soybean protein isolate,SPI)为主要原料,将甘油进行改性后制备的生物甘油基聚酯加入到成膜液中制备SPI复合膜,通过对贮藏期间SPI复合膜机械性能、水分含量和甘油迁出率进行跟踪测定,比较分析甘油经改性后制备的增塑剂对SPI复合膜的机械性能稳定性、保水性、甘油迁出率稳定性及微观结构的影响。研究结果表明:与未改性甘油增塑的SPI复合膜相比,改性后制备的机械性能稳定性最高的SPI复合膜为生物甘油基聚酯(生物聚甘油和脂肪酸的质量比为1∶1)增塑的复合膜,其拉伸强度稳定性提高了18.08%,断裂延伸率稳定性提高了34.52%,水蒸气透过系数稳定性提高了14.68%,水分含量稳定性提高了17.02%,甘油迁出率稳定性提高了74.28%,膜体系的紧密性和连续性增强,且其表面形成了致密的空间网状结构。生物甘油基聚酯的添加一定程度上提高了SPI复合包装薄膜的机械性能稳定性,为其更广泛的实际应用提供了重要的理论参考和技术支持。
文摘提出一种基于混合生物地理学优化算法的多目标进化算法(multi-objective optimization based on hybrid biogeography-based optimization,MOBBO)。针对生物地理学优化算法(biogeography-based optimization,BBO)自身的机制,建立适用于BBO的多目标进化模型。在模型中,结合栖息地个体间的Pareto支配关系对栖息地适应度指数进行了重新定义;为了保持栖息地种群的分布性,提出一种新的基于动态距离矩阵的分布性保持机制;同时,根据多目标优化的特点,提出了新的自适应迁入迁出率确定方式,动态迁移策略及分段logistic混沌变异策略。通过对测试函数ZDT和DTLZ的仿真实验表明,与现有多种多目标优化算法相比,MOBBO在解集的收敛性和分布的均匀性上均有明显改善,能够有效且高效地进行复杂多目标优化问题的求解。
文摘By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1,500 was obtained. The operating voltage is less than 2 V.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences
文摘An X-band AlGaN/GaN high-electron-mobility transistor (HEMT) on SiC substrate with high microwave power performances has been achieved. Its small-signal characteristics with a gate-length of 0.4 μm showed a unity current gain cut-off frequency (fT) of 22 GHz and a maximum oscillation frequency (fmax) of 65 GHz. The GaN HEMT device with a gate width of 1 mm exhibited a continuous-wave saturated output power of 10.2 W and a linear gain of 14.8 dB at 8 GHz, and successfully achieved the power-added efficiency (PAE) as high as 69.2%, which is very suitable for X-band power applications.