The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware archite...The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the finite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.展开更多
Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, ...Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.展开更多
Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging f...Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging for large range cell migration is proposed. It realized quick-look imaging of 8 times reduced resolution with parallel processing on memory shared 8 CPU SGI server. According to simulation experiment, this quick-look imaging algorithm with parallel processing can image 16384x16384 SAR raw data within 6 seconds. It reaches the requirement of real-time imaging.展开更多
This paper studied on the removal of toxic substance from river water using O3-GAC process. The result of GC/MS analysis indicated that the number of organic compound species was decreased by 55.1%. The species of tox...This paper studied on the removal of toxic substance from river water using O3-GAC process. The result of GC/MS analysis indicated that the number of organic compound species was decreased by 55.1%. The species of toxic substance of raw water also decreased from 16 to 5. The total removal rate of CODMn andUV254 were 45%~72% and 60%~80% following O3-GAC treatment. It reflected that this process had a good effective on removing unsaturation organic which absorb UV and toxic organic containing nitrogen. The results of Ames test indicated that raw water had a relatively strong mutagicity on TA 98. The O3-GAC process had a good ability in removing mutagen in water. The effluent water’s mutagicity is minus. The results of the study indicated that the effluent of the O3-GAC process was meet the demand of drinking water.展开更多
The authors will focus on the study of the design of Multiprocessor Systems on Chip (MPSoC), specifically in the context of improving the performance of applications located on the MPSoC architecture. The objective ...The authors will focus on the study of the design of Multiprocessor Systems on Chip (MPSoC), specifically in the context of improving the performance of applications located on the MPSoC architecture. The objective of this research is to study the problems of transition from a pure software implementation for an embodiment admitting one or more hardware components and to develop a methodology for automatic generation of migration of a software task into a hardware component in MPSoC. The transformation of a software task into a hardware task led to many changes, hardware part (connection, the requirement of an interrupt controller...), software part (at least one task, I/O (I/O), synchronization...) and an architectural point of view, the remarkable aspects of data storage. The experiment is done on the MJPEG decoder to illustrate the effectiveness of the authors' tool for automatic generation of migration.展开更多
The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, a...The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, and attracting extensive research interest. However, the performance of the solution-processed TFTs is generally lower than that of the vacuum-deposited ones. In this article, the full-solution processed TFTs with zinc-tin-oxide(ZTO) semiconductor and aluminium(Al_2O_3) dielectrics were fabricated, and their mobilities in the saturation region are high. Besides, the effect of the Al_2O_3 dielectrics' preparation technology on ZTO TFTs' performance was studied. Comparing the ZTO TFTs using the spin-coated Al_2O_3 dielectrics of 1–4 layers, the ZTO TFT with 3-layer Al_2O_3 dielectrics achieved the optimal performance as its field-effect carrier mobility in the saturation region is 112 cm^2/V s, its threshold voltage is 2.4 V, and its on-to-off current ratio is 2.8×105. This is also the highest reported carrier mobility of the solution-processed ZTO TFTs.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41104083 and 40804024) Fundamental Research Funds for the Central Universities (No, 2011YYL022)
文摘The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the finite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.
基金Project supported by the National Natural Science Foundation of China (Nos. 60662003 and 60462003), the Huawei Funds for Scienceand Technology (No. YJCB2004025SP) and the Science and Tech-nology Plan of Zhejiang Province (No. 2005C21002), China
文摘Performance evaluation shows that Hierarchical Mobile IPv6 (HMIPv6) cannot outperform standard Mobile IPv6 (MIPv6) in all scenarios. Thus, adaptive protocol selection under certain circumstances is desired. Moreover, it is necessary to balance the load among different Mobility Anchor Points (MAPs). This paper proposes an efficient three-level hierarchical ar- chitecture for mobility management in HMIPv6 networks, in which a mobile node (MN) may register with either a higher/lower MAP or its home agent according to its speed and the number of connecting correspondent nodes (CNs). An admission control algorithm and a replacement algorithm are introduced to achieve load balancing between two MAP levels and among different MAPs within the same MAP level. Admission control is based on the number of CNs but not MNs that an MAP serves. In case there is no capacity for an MN, the MAP chooses an existing MN to be replaced. The replaced MN uses the MAP selection al- gorithm again to choose another mobility agent. Simulation results showed that the proposed scheme achieves better performance not only in reducing the signaling overhead, but also in load balancing among different MAPs.
文摘Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging for large range cell migration is proposed. It realized quick-look imaging of 8 times reduced resolution with parallel processing on memory shared 8 CPU SGI server. According to simulation experiment, this quick-look imaging algorithm with parallel processing can image 16384x16384 SAR raw data within 6 seconds. It reaches the requirement of real-time imaging.
文摘This paper studied on the removal of toxic substance from river water using O3-GAC process. The result of GC/MS analysis indicated that the number of organic compound species was decreased by 55.1%. The species of toxic substance of raw water also decreased from 16 to 5. The total removal rate of CODMn andUV254 were 45%~72% and 60%~80% following O3-GAC treatment. It reflected that this process had a good effective on removing unsaturation organic which absorb UV and toxic organic containing nitrogen. The results of Ames test indicated that raw water had a relatively strong mutagicity on TA 98. The O3-GAC process had a good ability in removing mutagen in water. The effluent water’s mutagicity is minus. The results of the study indicated that the effluent of the O3-GAC process was meet the demand of drinking water.
文摘The authors will focus on the study of the design of Multiprocessor Systems on Chip (MPSoC), specifically in the context of improving the performance of applications located on the MPSoC architecture. The objective of this research is to study the problems of transition from a pure software implementation for an embodiment admitting one or more hardware components and to develop a methodology for automatic generation of migration of a software task into a hardware component in MPSoC. The transformation of a software task into a hardware task led to many changes, hardware part (connection, the requirement of an interrupt controller...), software part (at least one task, I/O (I/O), synchronization...) and an architectural point of view, the remarkable aspects of data storage. The experiment is done on the MJPEG decoder to illustrate the effectiveness of the authors' tool for automatic generation of migration.
基金supported by the National Natural Science Foundation of China(Grant No.21161160447)
文摘The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, and attracting extensive research interest. However, the performance of the solution-processed TFTs is generally lower than that of the vacuum-deposited ones. In this article, the full-solution processed TFTs with zinc-tin-oxide(ZTO) semiconductor and aluminium(Al_2O_3) dielectrics were fabricated, and their mobilities in the saturation region are high. Besides, the effect of the Al_2O_3 dielectrics' preparation technology on ZTO TFTs' performance was studied. Comparing the ZTO TFTs using the spin-coated Al_2O_3 dielectrics of 1–4 layers, the ZTO TFT with 3-layer Al_2O_3 dielectrics achieved the optimal performance as its field-effect carrier mobility in the saturation region is 112 cm^2/V s, its threshold voltage is 2.4 V, and its on-to-off current ratio is 2.8×105. This is also the highest reported carrier mobility of the solution-processed ZTO TFTs.