Two-dimensional single-crystalline p-n junctions of organic semiconductors(pn-2 DCOSs) show great potential in organic logic circuits due to their single crystal nature and excellent ambipolar charge transport. Howeve...Two-dimensional single-crystalline p-n junctions of organic semiconductors(pn-2 DCOSs) show great potential in organic logic circuits due to their single crystal nature and excellent ambipolar charge transport. However,there are only few reports on pn-2 DCOSs because it is difficult to obtain such highly ordered structure in p-n junction.Herein, a novel and effective solution processing method of secondary transfer technology based on the facile drop casting is used to fabricate devices of pn-2 DCOSs based on C8-BTBT(p-type) and TFT-CN(n-type) successfully. The high-performance ambipolar field transistors based on such ultrathin pn-2 DCOSs with several molecular layers thickness show wellbalanced ambipolar charge transport behaviors with hole mobility as high as 0.43 cm^2 V^-1 s^-1 and electron mobility up to 0.11 cm^2 V^-1 s(^-1), respectively. This work is essential for studying the intrinsic properties of organic p-n junctions and achieving high performance in organic complementary circuits.展开更多
基金financially supported by the Ministry of Science and Technology of China (2016YFB0401100 and 2017YFA0204503)the National Natural Science Foundation of China (51633006, 51725304, 51733004 and 51703159)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12030300)
文摘Two-dimensional single-crystalline p-n junctions of organic semiconductors(pn-2 DCOSs) show great potential in organic logic circuits due to their single crystal nature and excellent ambipolar charge transport. However,there are only few reports on pn-2 DCOSs because it is difficult to obtain such highly ordered structure in p-n junction.Herein, a novel and effective solution processing method of secondary transfer technology based on the facile drop casting is used to fabricate devices of pn-2 DCOSs based on C8-BTBT(p-type) and TFT-CN(n-type) successfully. The high-performance ambipolar field transistors based on such ultrathin pn-2 DCOSs with several molecular layers thickness show wellbalanced ambipolar charge transport behaviors with hole mobility as high as 0.43 cm^2 V^-1 s^-1 and electron mobility up to 0.11 cm^2 V^-1 s(^-1), respectively. This work is essential for studying the intrinsic properties of organic p-n junctions and achieving high performance in organic complementary circuits.