The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60...The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.展开更多
The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies ...The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.展开更多
文摘The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.
文摘The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.