Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that ...Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39-34.46, respectively, the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at -100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.展开更多
A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the norm...A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.展开更多
The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface...The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.展开更多
The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon...The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon. In this study, 2181 samples from the Changwu and Xifeng loess sections are analyzed and two high-resolution paleo-weathering timeseries of the last 1.2 Ma are generated, using the ratio of CBD extractable free Fe2O3 (FeD) versus the total iron (FeT). This new index is compared with micromorphological features, low-frequency magnetic susceptibility, frequency-dependent magnetic susceptibility, and the Rb/Sr ratio[5,6]. The results suggest that the FeD/FeT ratio is able to better reflect the degree of soil development. Since the chemical weather-ing of loess in the Loess Plateau region mainly depends upon the summer precipitation and tem-perature under modern climate condition, which are closely associated with strength of summer monsoon, and the chemical weathering intensity of loess primarily reflects the variations of the summer monsoon circulation.展开更多
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal...The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.展开更多
基金Supported by the National Natural Science Foundation of China (No. 40676011)the Key Technologies Research and Development Program of China (No. 2006BAB18B02)China’s Program for New Century Excellent Talents in University (No. NCET-10-0720)
文摘Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39-34.46, respectively, the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at -100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.
基金jointly supported by the National Natural Science Foundation of China grant number 41875132The National Key Research and Development Program of China grant number 2018YFA0606003。
文摘A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.
基金supported by State Key Program of National Natural Science Foundation of China (Grant No. 40830957)Public Welfare Research Project of China (Grant No. GYHY200806021)
文摘The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.
基金the National Natural Science Foundation of China (Grant Nos. 49725206, 4897176) and the Key Project of the Chinese Academy of Sciences (KZCX2-108).
文摘The loess-soil sequences in northern China provide a near continuous record of Quaternary paleoclimate. The pedogenetic intensity of the sequences is closely linked with the variations of the East Asian summer monsoon. In this study, 2181 samples from the Changwu and Xifeng loess sections are analyzed and two high-resolution paleo-weathering timeseries of the last 1.2 Ma are generated, using the ratio of CBD extractable free Fe2O3 (FeD) versus the total iron (FeT). This new index is compared with micromorphological features, low-frequency magnetic susceptibility, frequency-dependent magnetic susceptibility, and the Rb/Sr ratio[5,6]. The results suggest that the FeD/FeT ratio is able to better reflect the degree of soil development. Since the chemical weather-ing of loess in the Loess Plateau region mainly depends upon the summer precipitation and tem-perature under modern climate condition, which are closely associated with strength of summer monsoon, and the chemical weathering intensity of loess primarily reflects the variations of the summer monsoon circulation.
基金supported jointly by the CAS Programme (Grant No. XDA11010402)the National Basic Research Program of China (Grant Nos. 2010CB950403, 2012CB417203)+1 种基金the National Natural Science Foundation of China (Grant No. 41275088)the Project founded by China Postdoctoral Science Foundation.
文摘The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.