Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary...Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.展开更多
To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on ...To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on data measured in 2010 by a Wave Rider buoy,which was deployed in the South China Sea at coordinates 21.89°N,115.13°E,we evaluated the wave spectrum in the sea area when affected by three typhoons:Conson,Chanthu,and Megi. The Joint North Sea Wave Project spectrum was parameterized based on the observed wave spectrum. We proposed a spectrum with three parameters:the dimensionless lowest moment of the spectrum,dimensionless peak frequency,and spectrum width. The relationships between these spectral parameters and the dimensionless fetch were also discussed.展开更多
Purpose: This study aims to explore the effects of running on different surfaces on the characteristics of in-shoe plantar pressure and tibial acceleration. Methods: Thirteen male recreational runners were required ...Purpose: This study aims to explore the effects of running on different surfaces on the characteristics of in-shoe plantar pressure and tibial acceleration. Methods: Thirteen male recreational runners were required to run at 12 km/h velocity on concrete, synthetic track, natural grass, a normal treadmill, and a treadmill equipped with an ethylene vinyl acetate (EVA) cushioning underlay (treadmill_EVA), respectively. An in-shoe plantar pressure system and an accelerometer attached to the tibial tuberosity were used to record and analyze the characteristics of plantar pressure and tibial impact during running. Results: The results showed that there were no significant differences in the 1 st and 2nd peak plantar pressures (time of occurrence), pressure-time integral, and peak pressure distribution for the concrete, synthetic, grass, and normal treadmill surfaces. No significant differences in peak positive acceleration were observed among the five tested surface conditions. Compared to the concrete surface, however, running on treadmillEVA showed a significant decrease in the 1st peak plantar pressure and the pressure time integral for the impact phase (p 〈 0.05). These can be further ascribed to a reduced peak pressure observed at heel region (p 〈 0.05). Conclusion: There may not be an inevitable relationship between the surface and the lower-limb impact in runners. It is, however, still noteworthy that the effects of different treadmill surfaces should be considered in the interpretation of plantar pressure performance and translation of such results to overground running.展开更多
Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) ...Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) and three kinds of interaction zones (solidification, deformation and fragmentation) were observed during LBE droplet/water interaction and lead droplet/water interaction, respectively. The fragmentation zone (FZ) could be identified exactly by two border lines: spontaneous nucleation temperature and minimum film boiling temperature. Within fragmentation zone, 10% to 35% tiny debris (diameter 〈 1 mm) of LBE and 5 to 8 kPa peak pressure generated with increasing the LBE temperature and no effect with increasing the subcooling of water. Only 2%-4% tiny debris (diameter 〈 1 mm) of lead and 2 kPa peak pressure generated regardless of lead and water temperature.展开更多
In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit me...In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41374116)the Fundamental Research Funds for Central Universities(Grant No.2014B39014)
文摘Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.U1133001,41406017,41376027)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406401)
文摘To describe both the way in which a wave spectrum grows and the growth processes of realistic wave conditions,the dependence relationship between the spectrum parameters and wind parameters must be obtained. Based on data measured in 2010 by a Wave Rider buoy,which was deployed in the South China Sea at coordinates 21.89°N,115.13°E,we evaluated the wave spectrum in the sea area when affected by three typhoons:Conson,Chanthu,and Megi. The Joint North Sea Wave Project spectrum was parameterized based on the observed wave spectrum. We proposed a spectrum with three parameters:the dimensionless lowest moment of the spectrum,dimensionless peak frequency,and spectrum width. The relationships between these spectral parameters and the dimensionless fetch were also discussed.
基金supported by the National Natural Science Foundation of China (No. 11302131, No. 11372194, No. 11572202)+4 种基金the Doctoral Fund of Ministry of Education of China (No. 20123156120003)the Innovation Program of Shanghai Municipal Education Commission (No. 14YZ125)the Science and Technology Commission of Shanghai Municipality (No. 14DZ1103500)
文摘Purpose: This study aims to explore the effects of running on different surfaces on the characteristics of in-shoe plantar pressure and tibial acceleration. Methods: Thirteen male recreational runners were required to run at 12 km/h velocity on concrete, synthetic track, natural grass, a normal treadmill, and a treadmill equipped with an ethylene vinyl acetate (EVA) cushioning underlay (treadmill_EVA), respectively. An in-shoe plantar pressure system and an accelerometer attached to the tibial tuberosity were used to record and analyze the characteristics of plantar pressure and tibial impact during running. Results: The results showed that there were no significant differences in the 1 st and 2nd peak plantar pressures (time of occurrence), pressure-time integral, and peak pressure distribution for the concrete, synthetic, grass, and normal treadmill surfaces. No significant differences in peak positive acceleration were observed among the five tested surface conditions. Compared to the concrete surface, however, running on treadmillEVA showed a significant decrease in the 1st peak plantar pressure and the pressure time integral for the impact phase (p 〈 0.05). These can be further ascribed to a reduced peak pressure observed at heel region (p 〈 0.05). Conclusion: There may not be an inevitable relationship between the surface and the lower-limb impact in runners. It is, however, still noteworthy that the effects of different treadmill surfaces should be considered in the interpretation of plantar pressure performance and translation of such results to overground running.
文摘Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) and three kinds of interaction zones (solidification, deformation and fragmentation) were observed during LBE droplet/water interaction and lead droplet/water interaction, respectively. The fragmentation zone (FZ) could be identified exactly by two border lines: spontaneous nucleation temperature and minimum film boiling temperature. Within fragmentation zone, 10% to 35% tiny debris (diameter 〈 1 mm) of LBE and 5 to 8 kPa peak pressure generated with increasing the LBE temperature and no effect with increasing the subcooling of water. Only 2%-4% tiny debris (diameter 〈 1 mm) of lead and 2 kPa peak pressure generated regardless of lead and water temperature.
基金Project supported by the National Natural Science Foundation of China (No. 51008275)the China Postdoctoral Science Foundation (No.201104736)
文摘In the structural design of tall buildings, peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations. Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process. We review the use of this factor for time-variant reliability design by comparing it to the conven- tional Davenport's peak factor. Based on the asymptotic theory of statistical extremes, a new closed-form peak factor, the so-called Gamma peak factor, can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process. Using the Gamma peak factor, a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration. The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated. Utilizing wind tunnel data derived from synchronous multi-pressure measurements, we carried out a wind-induced time history response analysis of the Common- wealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration. Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic service- ability performance design of modem tall buildings.