There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of t...There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.展开更多
Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts wer...Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.展开更多
Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects...Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.展开更多
Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements s...Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.展开更多
文摘There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable batteries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their derivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Additionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of original MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the review discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
基金supported by the National Natural Science Foundation of China(51422605)the Provincial Natural Science Foundation of Zhejiang,China(LR16E060001)~~
文摘Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212 and51421002)
文摘Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.
基金supported by the National Natural Science Foundation of China(Grant No.11025422)the National Basic Research Program of China(Grant No.2011CB921701)
文摘Herein we investigated the electronic properties of layered transition-metal oxides NazTi2Sb2O by 23Na nuclear magnetic reso- nance (NMR) measurement. The resistivity, susceptibility and specific heat measurements show a phase transition at approxi- mately 114 K (TA). No splitting or broadening in the central line of 23Na NMR spectra is observed below and above the transi- tion temperature indicating no internal field being detected. The spin-lattice relaxation rate divided by T (I/T1T) shows a sharp drop at about 110 K which suggests a gap opening behavior. Below the phase transition temperature zone, I/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states (DOS) because of the gap. No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature. These results suggest a commensurate charge-density-wave (CDW) phase transition occurring.