[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua ...[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice展开更多
The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, s...The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.展开更多
[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic ...[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.展开更多
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture...The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.展开更多
[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T a...[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T and Grazing-8000) as experimental materials, after priming with 0.5 mmol/L putrescine (Put), spermidine (Spd) and spermine (Spm) for 24 h and chilling imbibition at 5 ℃ for 12, 24, 36 and 48 h, the effect of Put, Spd and Spm priming on chilling tolerance and germination ability of annual Lolium perenne seeds during imbibition was investigated. [Result] Put, Spd and Spm priming improved the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) and content of soluble protein content under low temperature stress, significantly in-creased the germination rate, and shortened the average germination duration. After chilling imbibition for 48 h, compared with the control, the average germination rate of annual Lolium perenne seeds was improved by 15.5% and 12.0% after Put, Spd and Spm priming, and the average germination duration was shortened by 1.21 and 1.14 d. During seed imbibition, the chilling tolerance of Grazing-8000 was stronger than that of Diamond T. Overall, Put, Spd and Spm treatment could increase the chilling tolerance of annual Lolium perenne seeds during imbibition, and improve the germination ability of seeds under low temperature stress. [Conclusion] Results of this study provided theoretical basis for the application of seed priming technology in the production of annual ryegrass.展开更多
Zhongmian 42 and Xinluzao 36 were used as raw materials to determine the contents of soluble sugar and protein, as well as dynamic changes of enzyme activities after flowering during cotton fiber growth. The results s...Zhongmian 42 and Xinluzao 36 were used as raw materials to determine the contents of soluble sugar and protein, as well as dynamic changes of enzyme activities after flowering during cotton fiber growth. The results showed that contents of soluble protein in the two species sharply declined 7 to 21 days after flowering, as the soluble sugar in Zhongmian 42 leveling off after 21 days of flowering while the soluble sugar in Xinluzao 36 dropped notably after 21 days of flowering before remaining stable after seven days later. The soluble sugar decreased 7 to 14 days after flowering before sharply rising to the maximum seven days later, and then began to decline quickly. The soluble sugar was the minimum after 35 days of flowering and then remaining stable. Peroxidase activity generally increased. Indole-3- acetic acid oxidase activities were low at 7 days after flowering. IAAO activity reached to the peaks on the 14th and 28th day after flowering. IAAO activity of two varieties decreased with the same trend 35 days after flowering.展开更多
Aluminium hydroxide precipitation from synthetic sodium aluminate solution was studied in the presence of hydrazine or hydrogen peroxide. The addition of low concentration of hydrazine is found to be effective, while ...Aluminium hydroxide precipitation from synthetic sodium aluminate solution was studied in the presence of hydrazine or hydrogen peroxide. The addition of low concentration of hydrazine is found to be effective, while higher amount of hydrogen peroxide is required to generate similar effect. XRD data confirm the product phase to be gibbsitic by nature. The scanning electron micrographs (SEM) show that agglomerated products form in the presence of hydrazine while fine discrete particles are produced with hydrogen peroxide. The probable mechanism of precipitation in the presence of hydrazine and hydrogen peroxide is also discussed.展开更多
AIM: To detect whether patients with a T tube after cholecystectomy and choledochotomy have duodenal-biliary reflux by measuring the radioactivity of Tc99m-labeled diethylene triamine penta-acetic acid (DTPA) in the b...AIM: To detect whether patients with a T tube after cholecystectomy and choledochotomy have duodenal-biliary reflux by measuring the radioactivity of Tc99m-labeled diethylene triamine penta-acetic acid (DTPA) in the bile and whether the patients with duodenal-biliary reflux have sphincter of Oddi hypomotility, by mea-suring the level of plasma and serum gastrin of the patients. Finally to if there is close relationship among sphincter of Oddi hypomotility, duodenal-biliary reflux and gastrointestinal peptides. METHODS: Forty-five patients with a T tube after cholecystectomy and choledochotomy were divided into reflux group and control group. The level of plasma and serum gastrin of the patients and of 12 healthy volunteers were measured by radioimmunoas-say. Thirty-four were selected randomly to undergo choledochoscope manometry. Sphincter of Oddi basal pressure (SOBP), amplitude (SOCA), frequency of con-tractions (SOF), duration of contractions (SOD), duo-denal pressure (DP) and common bile duct pressure (CBDP) were scored and analyzed. RESULTS: Sixteen (35.6%) patients were detected to have duodenal-biliary reflux. SOBP, SOCA and CBDP in the reflux group were much lower than the controlgroup (t = 5.254, 3.438 and 3.527, P < 0.001). SOD of the reflux group was shorter than the control group (t = 2.049, P < 0.05). The level of serum gastrin and plasma motilin of the reflux group was much lower than the control group (t = -2.230 and -2.235, P < 0.05). There was positive correlation between the level of plasma motilin and SOBP and between the level of serum gastrin and SOBP and CBDP. CONCLUSION: About 35.9% of the patients with a T tube after cholecystectomy and choledochotomy have duodenal-biliary reflux. Most of them have sphincter of Oddi hypomotility and the decreased level of plasma motilin and serum gastrin. The disorder of gastroin-testinal hormone secretion may result in sphincter of Oddi dysfunction. There is a close relationship between sphincter of Oddi hypomotility and duodenal-biliary re-flux.展开更多
The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one o...The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one of the most efficient treatment systems, is able to degrade various organics with the help of powerful ·OH radicals. This review focuses on recent progress in the use of bicarbonate activated hydrogen peroxide for wastewater treatment. The introduction of bicarbonate to pollutant treatment has led to appreciable improvements, not only in process efficiency, but also in process stability. This review describes in detail the applications of this process in homogeneous and heterogeneous systems. The enhanced degradation, limited or lack of leaching during heterogeneous degradation, and prolonged catalysts stability during degradation are salient features of this system. This review provides readers with new knowledge regarding bicarbonate, including the fact that it does not always harm pollutant degradation, and can significantly benefit degradation under some conditions.展开更多
In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA...In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA-5118.For acetaldehyde in acetone with ferric ion as catalyst,the optimized process conditions were presented. The main factors influencing the yield,selectivity and conversion are residence time,temperature and acetaldehyde concentration,respectively.The temperature range checked is from 30 to 65℃.High yield of 81.53%with high se- lectivity of 91.84%can be obtained at higher temperature of 55℃when the residence time is 5.5min and the acet- aldehyde concentration is 9.85%(by mass).And there is a critical acetaldehyde concentration point(Cccp)between 18%and 19.5%(by mass).At temperature less than 55℃,the highest yield to peracetic acid at each temperature level increases with temperature when the acetaldehyde concentration is below Cccp and decreases with temperature when the acetaldehyde concentration is above Cccp.展开更多
AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low...AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low dose) or 5000 mg/L (high dose) of lead acetate for 15 wk. A third group received saline and served as control. At the end of wk 15, colorimetric assays were applied to determine the concentrations of total protein and nitrite, the activities of the oxidative enzymes catalase and superoxide dismutase, and lipid peroxidation in homogenized gastric mucosal samples. RESULTS: Exposure of rats to lead significantly increased the gastric mucosal damage caused by acidified ethanol. Although the basal gastric acid secretory rate was not significantly altered, the maximal response of the stomach to histamine was significantly higher in the lead-exposed animals than in the unexposed control group. Exposure to low and high levels of lead significantly increased gastric lipid peroxidation to 183.2% ± 12.7% and 226.1% ± 6.8% of control values respectively (P < 0.0). On the other hand, lead exposure significantly decreased catalase and superoxide dismutase (SOD) activities and the amount of nitrite in gastric mucosal samples. CONCLUSION: Lead increases the formation of gastric ulcers by interfering with the oxidative metabolism in the stomach.展开更多
The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be ...The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.展开更多
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 y...Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.展开更多
AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free...AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.展开更多
基金Supported by National Natural Science Foundation of China(30671126)~~
文摘[Objective] The research aimed to study the correlations between catalase(CAT) and ascorbate peroxidase(ASP) and the growth and development of rice roots under cadmium stress.[Method] Taking rice variety Zhonghua No.11 as materials,the changes of rice seedlings under the treatment conditions of Cd,Cd+CAT inhibitor,Cd+APX inhibitor were studied.[Result] Under Cd stress,inhibition of CAT activity caused the significant inhibition on the growth of aerial parts,decreased the number of adventitious roots and lateral roots,but it can significant promote the elongation growth of adventitious roots and lateral roots.Moreover,the length of the first lateral root from root tip on the primary roots and adventitious roots was also increased than control.When APX activity was inhibited,the growth changes of rice were similar with that treated by CAT inhibitor.[Conclusion] CAT and APX may play important roles in the regulation of rice root system growth in both non-stress and Cd-stressed rice
基金Project(15A151)supported by the Key Research Projects of Education Department of Hunan Province,ChinaProject(2015JJ2115)supported by the Natural Science Fund Council of Hunan Province,China+1 种基金Project(JSU071308)supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(APSTIRT02)supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The oxidative dissolution of metalliferous black shale in sulfuric acid solution using sodium persulfate as an oxidant was investigated. The effects of leaching factors including leaching temperature, leaching time, stirring speed, initial concentration of sodium persulfate and sulfuric acid and particle size on the leaching rate were studied as well. The leaching kinetics of molybdenum, nickel and iron from metalliferous black shale shows that the leaching rate is controlled by a chemical reaction through a layer on the unreacted shrinking core. The leaching process follows the kinetics model 1-(1-a)^1/3=kt with apparent activation energies of 34.50, 43.14 and 71.79 kJ/mol for Mo, Ni and Fe, respectively. The reaction orders in sodium persulfate are 0.80, 1.01 and 0.75 for molybdenum, nickel and iron, respectively, while in sulfuric acid, these orders are 0.45, 0.75 and 0.50 for molybdenum, nickel and iron, respectively. In addition, the reaction mechanism for the dissolution of the metalliferous black shale was discussed.
文摘[Objective] This study was conducted to investigate the regulation of heat shock factor AtHsfA1a on ascorbate peroxidase under heat stress in Arabidopsis thaliana. [Method] After heat stress treatment on transgenetic A. thaliana with silenced endogenetic AtHsfA1a gene and wild A. thaliana plants as materials, the change in activity of APX enzyme was analyzed by spectrophotometry, the expression level of APX gene was investigated by real-time fluorescent quantitative PCR, and the binding condition of AtHsfAla with the promoter region of APX gene was analyzed by chromatin immunoprecipitation assay. [Result] The activity and mRNA level of APX in plants with silenced endogenetic AtHsfAla gene were higher than those in wild plants. Fragments of the promoter region of APX gene were not screened from the plants with silenced endogenetic AtHsfA1a gene, but found in wild plants. [Conclusion] This study provides a theoretical basis for the understanding of the important role of AtHsfAla in resistance to stress in plant, and is of great significance to the revealing of mechanism of resistance to stress in plant.
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
文摘The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.
基金Supported by Agricultural Research Project of Guizhou Province([2010]No.3045)~~
文摘[Objective] This study aimed to investigate the effect of potyamine priming on physiological and biochemical variations of Lolium perenne embryos and seed germination. [Method] With annual Lolium perenne (Diamond T and Grazing-8000) as experimental materials, after priming with 0.5 mmol/L putrescine (Put), spermidine (Spd) and spermine (Spm) for 24 h and chilling imbibition at 5 ℃ for 12, 24, 36 and 48 h, the effect of Put, Spd and Spm priming on chilling tolerance and germination ability of annual Lolium perenne seeds during imbibition was investigated. [Result] Put, Spd and Spm priming improved the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) and content of soluble protein content under low temperature stress, significantly in-creased the germination rate, and shortened the average germination duration. After chilling imbibition for 48 h, compared with the control, the average germination rate of annual Lolium perenne seeds was improved by 15.5% and 12.0% after Put, Spd and Spm priming, and the average germination duration was shortened by 1.21 and 1.14 d. During seed imbibition, the chilling tolerance of Grazing-8000 was stronger than that of Diamond T. Overall, Put, Spd and Spm treatment could increase the chilling tolerance of annual Lolium perenne seeds during imbibition, and improve the germination ability of seeds under low temperature stress. [Conclusion] Results of this study provided theoretical basis for the application of seed priming technology in the production of annual ryegrass.
文摘Zhongmian 42 and Xinluzao 36 were used as raw materials to determine the contents of soluble sugar and protein, as well as dynamic changes of enzyme activities after flowering during cotton fiber growth. The results showed that contents of soluble protein in the two species sharply declined 7 to 21 days after flowering, as the soluble sugar in Zhongmian 42 leveling off after 21 days of flowering while the soluble sugar in Xinluzao 36 dropped notably after 21 days of flowering before remaining stable after seven days later. The soluble sugar decreased 7 to 14 days after flowering before sharply rising to the maximum seven days later, and then began to decline quickly. The soluble sugar was the minimum after 35 days of flowering and then remaining stable. Peroxidase activity generally increased. Indole-3- acetic acid oxidase activities were low at 7 days after flowering. IAAO activity reached to the peaks on the 14th and 28th day after flowering. IAAO activity of two varieties decreased with the same trend 35 days after flowering.
基金M/s NALCO, Bhubaneswar for the partial financial support to carry out this work
文摘Aluminium hydroxide precipitation from synthetic sodium aluminate solution was studied in the presence of hydrazine or hydrogen peroxide. The addition of low concentration of hydrazine is found to be effective, while higher amount of hydrogen peroxide is required to generate similar effect. XRD data confirm the product phase to be gibbsitic by nature. The scanning electron micrographs (SEM) show that agglomerated products form in the presence of hydrazine while fine discrete particles are produced with hydrogen peroxide. The probable mechanism of precipitation in the presence of hydrazine and hydrogen peroxide is also discussed.
文摘AIM: To detect whether patients with a T tube after cholecystectomy and choledochotomy have duodenal-biliary reflux by measuring the radioactivity of Tc99m-labeled diethylene triamine penta-acetic acid (DTPA) in the bile and whether the patients with duodenal-biliary reflux have sphincter of Oddi hypomotility, by mea-suring the level of plasma and serum gastrin of the patients. Finally to if there is close relationship among sphincter of Oddi hypomotility, duodenal-biliary reflux and gastrointestinal peptides. METHODS: Forty-five patients with a T tube after cholecystectomy and choledochotomy were divided into reflux group and control group. The level of plasma and serum gastrin of the patients and of 12 healthy volunteers were measured by radioimmunoas-say. Thirty-four were selected randomly to undergo choledochoscope manometry. Sphincter of Oddi basal pressure (SOBP), amplitude (SOCA), frequency of con-tractions (SOF), duration of contractions (SOD), duo-denal pressure (DP) and common bile duct pressure (CBDP) were scored and analyzed. RESULTS: Sixteen (35.6%) patients were detected to have duodenal-biliary reflux. SOBP, SOCA and CBDP in the reflux group were much lower than the controlgroup (t = 5.254, 3.438 and 3.527, P < 0.001). SOD of the reflux group was shorter than the control group (t = 2.049, P < 0.05). The level of serum gastrin and plasma motilin of the reflux group was much lower than the control group (t = -2.230 and -2.235, P < 0.05). There was positive correlation between the level of plasma motilin and SOBP and between the level of serum gastrin and SOBP and CBDP. CONCLUSION: About 35.9% of the patients with a T tube after cholecystectomy and choledochotomy have duodenal-biliary reflux. Most of them have sphincter of Oddi hypomotility and the decreased level of plasma motilin and serum gastrin. The disorder of gastroin-testinal hormone secretion may result in sphincter of Oddi dysfunction. There is a close relationship between sphincter of Oddi hypomotility and duodenal-biliary re-flux.
基金supported by the National Natural Science Foundation of China(21273086)~~
文摘The serious limitations of available technologies for decontamination of wastewater have compelled researchers to search for alternative solutions. Catalytic treatment with hydrogen peroxide, which appears to be one of the most efficient treatment systems, is able to degrade various organics with the help of powerful ·OH radicals. This review focuses on recent progress in the use of bicarbonate activated hydrogen peroxide for wastewater treatment. The introduction of bicarbonate to pollutant treatment has led to appreciable improvements, not only in process efficiency, but also in process stability. This review describes in detail the applications of this process in homogeneous and heterogeneous systems. The enhanced degradation, limited or lack of leaching during heterogeneous degradation, and prolonged catalysts stability during degradation are salient features of this system. This review provides readers with new knowledge regarding bicarbonate, including the fact that it does not always harm pollutant degradation, and can significantly benefit degradation under some conditions.
文摘In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA-5118.For acetaldehyde in acetone with ferric ion as catalyst,the optimized process conditions were presented. The main factors influencing the yield,selectivity and conversion are residence time,temperature and acetaldehyde concentration,respectively.The temperature range checked is from 30 to 65℃.High yield of 81.53%with high se- lectivity of 91.84%can be obtained at higher temperature of 55℃when the residence time is 5.5min and the acet- aldehyde concentration is 9.85%(by mass).And there is a critical acetaldehyde concentration point(Cccp)between 18%and 19.5%(by mass).At temperature less than 55℃,the highest yield to peracetic acid at each temperature level increases with temperature when the acetaldehyde concentration is below Cccp and decreases with temperature when the acetaldehyde concentration is above Cccp.
基金Supported by the Senate, University of Ibadan, Nigeria partly through SRG grant to SBO UI/SRG/COM/2000/10A
文摘AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low dose) or 5000 mg/L (high dose) of lead acetate for 15 wk. A third group received saline and served as control. At the end of wk 15, colorimetric assays were applied to determine the concentrations of total protein and nitrite, the activities of the oxidative enzymes catalase and superoxide dismutase, and lipid peroxidation in homogenized gastric mucosal samples. RESULTS: Exposure of rats to lead significantly increased the gastric mucosal damage caused by acidified ethanol. Although the basal gastric acid secretory rate was not significantly altered, the maximal response of the stomach to histamine was significantly higher in the lead-exposed animals than in the unexposed control group. Exposure to low and high levels of lead significantly increased gastric lipid peroxidation to 183.2% ± 12.7% and 226.1% ± 6.8% of control values respectively (P < 0.0). On the other hand, lead exposure significantly decreased catalase and superoxide dismutase (SOD) activities and the amount of nitrite in gastric mucosal samples. CONCLUSION: Lead increases the formation of gastric ulcers by interfering with the oxidative metabolism in the stomach.
基金supported by the National Natural Science Foundation of China(21273086)Chutian Scholar Foundation from Hubei Province,China~~
文摘The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-339 and KSCX1-07) the Ministry of Science and Technology of China (No. 2001CCB00600).
文摘Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.
文摘AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.