A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) w...A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.展开更多
Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This s...Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This study is to investigate the possibility of removing carbon and nitrogen simultaneously in a biological aerated filter (BAF) with partially packed media without any backwashing process. The upper part of BAF up to 0.5 m depth is packed with plastic media (Kaldnes K1) with diameter and length of 10 mm and 7 mm respectively. This partially packed BAF creates a hybrid system of attached growth and suspended growth combined in a single reactor. Three C:N ratios, i.e. 15, 10 and 4, were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 1.0±0.54 kg COD/(m^3·d). The organic loading rate (OLR) ratios were calculated based on carbon and TKN loading. The carbon removal percentage of 86.7±7.3%, 85.1±10.3%, and 91.0±5.6% and TKN removal percentage of 24.7±11.6%, 48.0±25.9% and 62.8±7.9% were achieved after steady-state for the C:N ratio of 15, 10, and 4 respectively. Suspended solid concentration in the effluent was found to be high throughout the treatment, but no clogging occurred during the 4 months of operation period even though backwashing was eliminated.展开更多
基金Supported by the Important National Science & Technology Specific Projects (2009ZX07526-005-05)
文摘A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.
文摘Biological aerated filter (BAF) is an advanced oxidation process that can sustain high volumetric loads with high quality effluent. However, backwashing process needed for the system limits its applicability. This study is to investigate the possibility of removing carbon and nitrogen simultaneously in a biological aerated filter (BAF) with partially packed media without any backwashing process. The upper part of BAF up to 0.5 m depth is packed with plastic media (Kaldnes K1) with diameter and length of 10 mm and 7 mm respectively. This partially packed BAF creates a hybrid system of attached growth and suspended growth combined in a single reactor. Three C:N ratios, i.e. 15, 10 and 4, were compared during this study by varying the nitrogen loading while the carbon loading was kept constant at 1.0±0.54 kg COD/(m^3·d). The organic loading rate (OLR) ratios were calculated based on carbon and TKN loading. The carbon removal percentage of 86.7±7.3%, 85.1±10.3%, and 91.0±5.6% and TKN removal percentage of 24.7±11.6%, 48.0±25.9% and 62.8±7.9% were achieved after steady-state for the C:N ratio of 15, 10, and 4 respectively. Suspended solid concentration in the effluent was found to be high throughout the treatment, but no clogging occurred during the 4 months of operation period even though backwashing was eliminated.