The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were m...The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were measured as functions of the concentrations of MgSO4 and Al2(SO4)3 in the TiOSO4 solution.The Boltzmann growth model,which focuses on two main parameters,namely the concentrations of Mg2+ and Al3+(ρ(Mg2+) and ρ(Al3+),respectively),fits the data from the hydrolysis process well with R20.988.The samples were characterized by ICP,SEM,XRD,and laser particle size analyzer.It is found that the addition of Mg SO4 simultaneously improves the hydrolysis ratio and the hydrolysis rate,especially when F(the mass ratio of H2SO4 to TiO2) is high,hydrolysis ratio increases from 42.8% to 83.0%,whereas the addition of Al2(SO4)3 has negligible effect on the chemical kinetics of HTD precipitation during the hydrolysis process,hydrolysis ratio increases from 42.8% to 51.9%.An investigation on the particle size of HTD reveals that the addition of Mg SO4 and Al2(SO4)3 clearly increases the size of the crystallites and decreases the size of the aggregates.展开更多
By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction...By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction (XRD), differential thermal analysis (DTG), thermal gravimetry (TG) and scanning electron microscopy (SEM), basical factors, affecting the formation .of SrTiO3,have been discussed. IR results show that the acetic acid as a chelating ligand plays an important role in modifying the whole hydrolysis --condensation process. The addition of glycerol leads to obtaining clear and unique gels. The structure of SrTiO3 calcined at 800℃ is cubic.展开更多
Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were...Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were used as a structural framework to dilute Ir incorporation for fabricating electrocatalysts for water splitting.Minimal Ir-incorporated CoxNi1-xO nanowire arrays were synthesized through the facile hydrothermal method with subsequent calcination by using Ni foam(NF)as both the substrate and source of Ni.The electrocatalytic water-splitting performance was found to crucially depend on the Ir content of the parent CoxNi1-xO nanowire arrays.As a result,for a minimal Ir content,as low as 0.57 wt%,the obtained Ir-CoxNi1-xO/NF electrodes exhibited optimal catalytic activity in terms of a low overpotential of 260 mV for the oxygen evolution reaction and 53 mV for the hydrogen evolution reaction at 10 mA cm?2 in 1 mol L–1 KOH.When used as bifunctional electrodes in water splitting,the current density of 10 mA cm–2 was obtained at a low cell voltage of 1.55 V.Density functional theory calculations revealed that the Ir-doped CoxNi1-xO arrays exhibited enhanced electrical conductivity and low Gibbs free energy,which contributed to the improved electrocatalytic activity.The present study presents a new strategy for the development of transition metal oxide electrocatalysts with low levels of Ir incorporation for efficient water splitting.展开更多
The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration...The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.展开更多
Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construc...Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H2 and H2O2 production. Both H2 and H2O2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g^-1 h^–1 (first 1 h) for H2 and H2O2, respectively, which is much higher than that of a commercial Pt/TiO2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H2O2, compared with the four-electron oxidation of water to O2.展开更多
The hydrolysis process and mechanisms of unique as-prepared KCrO2 and K3 CrO4 were systematically investigated. The characterization results of XRD, IR and SEM show that the hydrolysis reaction can be realized at a lo...The hydrolysis process and mechanisms of unique as-prepared KCrO2 and K3 CrO4 were systematically investigated. The characterization results of XRD, IR and SEM show that the hydrolysis reaction can be realized at a low reaction temperature of 80 ℃ and a reaction time of 24 h. Moreover, the greyish-green α-CrOOH with a hexagonal plate-like morphology and a large size of 10 μm is formed via the hydrolysis of the single-phase hexagonal KCrO2, while the green sol-gel of amorphous Cr(OH)3 with a lumpy aggregate morphology is generated through the hydrolysis of a cubic K3 CrO4. It is a facile and rapid method to synthesize pure-phase chromium oxyhydroxide via the above hydrolysis.展开更多
A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the...A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the feasibility of the measurement method,especially in monitoring the nucleation and growth of the NGH. Isovolumetric formation experiment of NGH is performed at 2°C and 7.8 MPa.Before the NGH formation,the initial resistivity is measured to be 4-7Ω·m,which declines to the minimum value of 2-3Ω·m when NGH begins to nucleate after the pressure is reduced to 3.3 MPa.As the NGH grows,the resistivity increases to a great extent,and finally it keeps at 11-13Ω·m,indicating the completion of the formation process.The NGH decomposition experiment is then performed.When the outlet pressure decreases,NGH begins to decompose,accordingly,the resistivity declines gradually,and is at 5-9Ω·m when the decomposition process ends,which is slightly higher than the resistivity value before the formation of NGH.The occurrence and distribution uniformity of NGH are determined by the distribution and magnitude of the resistivity measured on an one-dimensional sand-packed model.This study tackles the accurate estimation for the distribution of NGH in porous medium,and provides an experimental basis for further study on NGH exploitation in the future.展开更多
Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute ...Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute sulfuric acid as a catalyst,the kinetic experiments were performed in a temperature range of 190-230°C and an acid concentration range of 1%-5% (by mass) .A simple model of first-order series reactions was developed,which provided a satisfactory interpretation of the experimental results.The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural(5-HMF) were also established.The kinetic parameters provided useful information for understanding the hydrolysis process.展开更多
The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was c...The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.展开更多
The hydrolysis process to obtain the so-called "reducing sugars" represents the main step involved in the production of the second generation bioethanol. This product can be obtained directly from various types of g...The hydrolysis process to obtain the so-called "reducing sugars" represents the main step involved in the production of the second generation bioethanol. This product can be obtained directly from various types of green biomass, replacing the use of cereals cultivations, with obvious benefits to the environment and the economy of agricultural production. However, it is necessary to improve the hydrolysis process of the cellulose to achieve this goal. To this purpose, we applied a chemical process formerly used. The values of sugars yield were increased by about 40% with respect to the previous study. Further significant cost savings were accomplished, resulting from the recovery of the by-product, calcium sulfate, commercially known as gypsum.展开更多
The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatme...The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,展开更多
For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measu...For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.展开更多
The analysis of any kinetic process involves the development of a mathematical model with predictive purposes. Generally, those models have characteristic parameters that should be estimated experimentally. A typical ...The analysis of any kinetic process involves the development of a mathematical model with predictive purposes. Generally, those models have characteristic parameters that should be estimated experimentally. A typical example is Michaelis-Menten model for enzymatic hydrolysis. Even though conventional kinetic models are very useful, they are only valid under certain experimental conditions. Besides, frequently large standard errors of estimated parameters are found due to the error of experimental determinations and/or insufficient number of assays. In this work, we developed an artificial neural network (ANN) to predict the performance of enzyme reactors at various operational conditions. The net was trained with experimental data obtained under different hydrolysis conditions of lactose solutions or cheese whey and different initial concentrations of enzymes or substrates. In all the experiments, commercial 13-galactosidase either free or immobilized in a chitosan support was used. The neural network developed in this study had an average absolute relative error of less than 5% even using few experimental data, which suggests that this tool provides an accurate prediction method for lactose hydrolysis.展开更多
This paper studies the effect of reducing sugar concentration, reducing sugar yield and byproducts furfural concentration that generate by straw under the condition of acid concentration and flow rate in the gradient ...This paper studies the effect of reducing sugar concentration, reducing sugar yield and byproducts furfural concentration that generate by straw under the condition of acid concentration and flow rate in the gradient temperature hydrolysis process (60℃-230℃), we can conclude that reducing sugar yield is highest when the concentration of sulfuric acid is 1%, the velocity of reaction liquid is 25mL/min, at the highest concentration of wheat straw yield of reducing sugar up to 32.9g/L, the reducing sugar yield was 60.8%. At this point the furfural concentration is lower than 1.0g/L, but in the entire gradient heating process, reducing sugar concentration peak of furfural concentration peak appears in the temperature lower, can realize the separation of the reducing sugar and furfural good, reduce the inhibition of fermentation by- products such follow-up treatment process.展开更多
Depolymerization of agar was performed using agarase, which was extracted from the cell-free medium of a culture of marine bacterial Alterornonas sp. nov. SY 37-12. After ethanol fractionation and lyophilization, the ...Depolymerization of agar was performed using agarase, which was extracted from the cell-free medium of a culture of marine bacterial Alterornonas sp. nov. SY 37-12. After ethanol fractionation and lyophilization, the water-soluble agar polysaccharide (WSAP3) was collected. The anti-tumor activity of the product was determined by using Sarcoma 180 tumor in mouse. The tumor inhibition rate of WSAP3 the product was determined by using Sarcoma 180 tumor in mouse. The tumor inhibition rate of WSAP3 reached 48.7% at a dose of 64mg kg^-1 after 15 days treatment. WSAP3 enhanced the aetivities of superoxide dismutase and catalase, which suggests that WSAP3 was effective in promoting the antioxidation ability and eliminating danger from free radicals. The result of flow cytometry showed that the WSAP3 had no activities of cell cycle inhibition or apoptosis-inducing activities. The anti-oxidation of WSAP3 was further confirmed by test in vitro, which might play an important role in anti-tumor activity. The immunological regulation of WSAP3, especially its effect on the phagocytosis ratio and phagocytosis index of rophage was also assayed in test in vivo.展开更多
Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like disper...Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like dispersion. Here,we propose a solute transport model in porous media of continuously expanding scale, according to the combinatorics principle. The model supposed actual porous media as a combinative body of many basic segments. First, we studied the solute transport process in each basic segment body, and then deduced the distribution of pore velocity in each basic segment body by difference approximation, finally assembled the solute transport process of each basic segment body into one of the combinative body. The simulation result coincided with the solute transport process observed in test. The model provides useful insight into the solute transport process of the non-Fickian dispersion in continuously expanding scale.展开更多
Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-t...Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.展开更多
基金Project(51090380)supported by the National Natural Science Foundation of ChinaProjects(2013CB632601,2013CB632604)supported by the National Basic Research Program of China
文摘The influence of magnesium and aluminum salts as impurities on the hydrolysis of titanyl sulfate was investigated.The degree of TiOSO4 conversion to hydrated titanium dioxide(HTD) and the particle size of HTD were measured as functions of the concentrations of MgSO4 and Al2(SO4)3 in the TiOSO4 solution.The Boltzmann growth model,which focuses on two main parameters,namely the concentrations of Mg2+ and Al3+(ρ(Mg2+) and ρ(Al3+),respectively),fits the data from the hydrolysis process well with R20.988.The samples were characterized by ICP,SEM,XRD,and laser particle size analyzer.It is found that the addition of Mg SO4 simultaneously improves the hydrolysis ratio and the hydrolysis rate,especially when F(the mass ratio of H2SO4 to TiO2) is high,hydrolysis ratio increases from 42.8% to 83.0%,whereas the addition of Al2(SO4)3 has negligible effect on the chemical kinetics of HTD precipitation during the hydrolysis process,hydrolysis ratio increases from 42.8% to 51.9%.An investigation on the particle size of HTD reveals that the addition of Mg SO4 and Al2(SO4)3 clearly increases the size of the crystallites and decreases the size of the aggregates.
文摘By using strontium acetate and titanium n--butoxide [Ti(OBun)4] as starting agents, perovskite -- type double oxide SrTiO3 can be obtained by the sol--gel method. By means of infra-red spectra (IR), X--ray diffraction (XRD), differential thermal analysis (DTG), thermal gravimetry (TG) and scanning electron microscopy (SEM), basical factors, affecting the formation .of SrTiO3,have been discussed. IR results show that the acetic acid as a chelating ligand plays an important role in modifying the whole hydrolysis --condensation process. The addition of glycerol leads to obtaining clear and unique gels. The structure of SrTiO3 calcined at 800℃ is cubic.
基金financially supported by the National Natural Science Foundation of China (51772255)the Hunan Provincial Innovation Foundation For Postgraduate (CX2017B274)+1 种基金the National Basic Research Program of China (2015CB921103)the Program for Changjiang Scholars and Innovative Research Team in University (IRT13093)~~
文摘Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were used as a structural framework to dilute Ir incorporation for fabricating electrocatalysts for water splitting.Minimal Ir-incorporated CoxNi1-xO nanowire arrays were synthesized through the facile hydrothermal method with subsequent calcination by using Ni foam(NF)as both the substrate and source of Ni.The electrocatalytic water-splitting performance was found to crucially depend on the Ir content of the parent CoxNi1-xO nanowire arrays.As a result,for a minimal Ir content,as low as 0.57 wt%,the obtained Ir-CoxNi1-xO/NF electrodes exhibited optimal catalytic activity in terms of a low overpotential of 260 mV for the oxygen evolution reaction and 53 mV for the hydrogen evolution reaction at 10 mA cm?2 in 1 mol L–1 KOH.When used as bifunctional electrodes in water splitting,the current density of 10 mA cm–2 was obtained at a low cell voltage of 1.55 V.Density functional theory calculations revealed that the Ir-doped CoxNi1-xO arrays exhibited enhanced electrical conductivity and low Gibbs free energy,which contributed to the improved electrocatalytic activity.The present study presents a new strategy for the development of transition metal oxide electrocatalysts with low levels of Ir incorporation for efficient water splitting.
基金Project(B0210)supported by One Hundred Talent Project of Chinese Academy of SciencesProject(2008-G-158)supported by Science and Technology Tackling Key Program of Qinghai Province,China
文摘The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.
基金supported by the National Natural Science Foundation of China(21703046)the National Key R&D of China(2016YFF0203803 and 2016YFA0200902)~~
文摘Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H2 and H2O2 production. Both H2 and H2O2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g^-1 h^–1 (first 1 h) for H2 and H2O2, respectively, which is much higher than that of a commercial Pt/TiO2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H2O2, compared with the four-electron oxidation of water to O2.
基金Project(R2018SCH02)supported by the High-level Talents Foundation of Chongqing University of Art and Sciences,ChinaProject(P2018CH10)supported by Major Cultivation Program of Chongqing University of Arts and Sciences,China+1 种基金Project(cstc2019jcyj-msxmX0788)supported by the Natural Science Foundation of Chongqing,ChinaProject(KJQN201901342)supported by the Science and Technology Research Program of Chongqing Municipal Education Commission,China。
文摘The hydrolysis process and mechanisms of unique as-prepared KCrO2 and K3 CrO4 were systematically investigated. The characterization results of XRD, IR and SEM show that the hydrolysis reaction can be realized at a low reaction temperature of 80 ℃ and a reaction time of 24 h. Moreover, the greyish-green α-CrOOH with a hexagonal plate-like morphology and a large size of 10 μm is formed via the hydrolysis of the single-phase hexagonal KCrO2, while the green sol-gel of amorphous Cr(OH)3 with a lumpy aggregate morphology is generated through the hydrolysis of a cubic K3 CrO4. It is a facile and rapid method to synthesize pure-phase chromium oxyhydroxide via the above hydrolysis.
基金Supported by the National High Technology Research and Development Program of China(2006AA09A209)
文摘A new one-dimensional system for resistivity measurement for natural gas hydrate(NGH)exploitation is designed,which is used to study the formation and decomposition processes of NGH.The experimental results verify the feasibility of the measurement method,especially in monitoring the nucleation and growth of the NGH. Isovolumetric formation experiment of NGH is performed at 2°C and 7.8 MPa.Before the NGH formation,the initial resistivity is measured to be 4-7Ω·m,which declines to the minimum value of 2-3Ω·m when NGH begins to nucleate after the pressure is reduced to 3.3 MPa.As the NGH grows,the resistivity increases to a great extent,and finally it keeps at 11-13Ω·m,indicating the completion of the formation process.The NGH decomposition experiment is then performed.When the outlet pressure decreases,NGH begins to decompose,accordingly,the resistivity declines gradually,and is at 5-9Ω·m when the decomposition process ends,which is slightly higher than the resistivity value before the formation of NGH.The occurrence and distribution uniformity of NGH are determined by the distribution and magnitude of the resistivity measured on an one-dimensional sand-packed model.This study tackles the accurate estimation for the distribution of NGH in porous medium,and provides an experimental basis for further study on NGH exploitation in the future.
基金Supported by the National Key Technology R&D Program of China (2007BAD66B04)
文摘Levulinic acid is considered as a promising green platform chemical derived from biomass.The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study.Using dilute sulfuric acid as a catalyst,the kinetic experiments were performed in a temperature range of 190-230°C and an acid concentration range of 1%-5% (by mass) .A simple model of first-order series reactions was developed,which provided a satisfactory interpretation of the experimental results.The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural(5-HMF) were also established.The kinetic parameters provided useful information for understanding the hydrolysis process.
基金Supported by the National Natural Science Foundation of China (No.59972022) and the 0pening Foundation of the Environmental Engineering Key Discipline, Zhejiang University of Technology (No.56310503011).
文摘The effect of increasing course of temperature and pressure on polypropylene (PP) degradation in supercritical water was investigated for developing a process of recycling waste plastic. A group of experiments was carded out in a reaction system at a pressure of 26MPa, temperature of 380℃ or 400℃ for 30min, 70min, and 120min by Course One (the increasing course of temperature and pressure is via gaseous regions to supercritical regions), and the other group was carried out at corresponding holding conditions by Course Two (the increasing course of temperature and pressure is via liquid regions to supercritical regions). The time of the increasing courses was about 30min. Products were analyzed by Ostward-type viscometer, gaseous chromatography, and mass spectrometers (GC/MS). Characterization results suggested that different increasing courses of temperature and pressure would give rise to different results, although they were treated under the similar holding conditions. It was also found that Course Two was more effective on PP degradation in supercritical water.
文摘The hydrolysis process to obtain the so-called "reducing sugars" represents the main step involved in the production of the second generation bioethanol. This product can be obtained directly from various types of green biomass, replacing the use of cereals cultivations, with obvious benefits to the environment and the economy of agricultural production. However, it is necessary to improve the hydrolysis process of the cellulose to achieve this goal. To this purpose, we applied a chemical process formerly used. The values of sugars yield were increased by about 40% with respect to the previous study. Further significant cost savings were accomplished, resulting from the recovery of the by-product, calcium sulfate, commercially known as gypsum.
文摘The increasing of tapioca production nowadays effected the production of waste. The waste of tapioca industries consists of two kinds, which were liquid waste and solid waste. Further more, tapioca solid waste treatment was ineffective. Weather solid waste produced from the extraction process still contains high concentration of starch that can be used to produce high quality product, for example, bio ethanol or other alternative energy sources. Objective of these experimental work was utilizing solid waste of tapioca industries and looking for the exactly composition of n-amylase and gluco-amylase enzymes on the hydrolysis processes of the solid waste of tapioca. The exact composition from both enzymes can be expected to increase the yield of glucose. Variables of cx-amylase enzyme for this research were 0.3% (w/w) and 0.5% (w/w) with liquefaction time were 1 hour and 1.5 hours, and variables of glucoamylase enzyme were 0.3% (w/w) and 0.5% (w/w). To achieve these goals, the experimental work was held in laboratory scale with batch process. Firstly, tapioca solid waste was pretreated at 90 ~C and added u-amylase enzyme for 1 hour and 1.5 hours (variable of liquefaction time). Then, substrate was cooled down to 60 ~C added with proposed variables of glucoamylase enzyme, and was analysed 24 hours after added. This experiment showed the best ratio between a-amylase and glucoamylase enzymes 0.5%:0.5% with 1 hour of liquefaction time. The highest glucose reaches 8.468% and yields 0.892 (g glucose/g starch) with starch conversion of 59.94%. KM = 0.0468 g/mL and rmax = 0.311 g/mL·h,
文摘For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action, an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion. The law of water effect on gas desorption was obtained after water invasion through experiment for the first time. The results show that water's later invasion not only can make the quantity of gas dcsorp- tion greatly reduced, but also can make gas desorption end early. Therefore, when evaluating the applications of high-pressure water injection to increase gas extraction efficiency, we should take water damaging effects on gas desorption into account.
文摘The analysis of any kinetic process involves the development of a mathematical model with predictive purposes. Generally, those models have characteristic parameters that should be estimated experimentally. A typical example is Michaelis-Menten model for enzymatic hydrolysis. Even though conventional kinetic models are very useful, they are only valid under certain experimental conditions. Besides, frequently large standard errors of estimated parameters are found due to the error of experimental determinations and/or insufficient number of assays. In this work, we developed an artificial neural network (ANN) to predict the performance of enzyme reactors at various operational conditions. The net was trained with experimental data obtained under different hydrolysis conditions of lactose solutions or cheese whey and different initial concentrations of enzymes or substrates. In all the experiments, commercial 13-galactosidase either free or immobilized in a chitosan support was used. The neural network developed in this study had an average absolute relative error of less than 5% even using few experimental data, which suggests that this tool provides an accurate prediction method for lactose hydrolysis.
文摘This paper studies the effect of reducing sugar concentration, reducing sugar yield and byproducts furfural concentration that generate by straw under the condition of acid concentration and flow rate in the gradient temperature hydrolysis process (60℃-230℃), we can conclude that reducing sugar yield is highest when the concentration of sulfuric acid is 1%, the velocity of reaction liquid is 25mL/min, at the highest concentration of wheat straw yield of reducing sugar up to 32.9g/L, the reducing sugar yield was 60.8%. At this point the furfural concentration is lower than 1.0g/L, but in the entire gradient heating process, reducing sugar concentration peak of furfural concentration peak appears in the temperature lower, can realize the separation of the reducing sugar and furfural good, reduce the inhibition of fermentation by- products such follow-up treatment process.
文摘Depolymerization of agar was performed using agarase, which was extracted from the cell-free medium of a culture of marine bacterial Alterornonas sp. nov. SY 37-12. After ethanol fractionation and lyophilization, the water-soluble agar polysaccharide (WSAP3) was collected. The anti-tumor activity of the product was determined by using Sarcoma 180 tumor in mouse. The tumor inhibition rate of WSAP3 the product was determined by using Sarcoma 180 tumor in mouse. The tumor inhibition rate of WSAP3 reached 48.7% at a dose of 64mg kg^-1 after 15 days treatment. WSAP3 enhanced the aetivities of superoxide dismutase and catalase, which suggests that WSAP3 was effective in promoting the antioxidation ability and eliminating danger from free radicals. The result of flow cytometry showed that the WSAP3 had no activities of cell cycle inhibition or apoptosis-inducing activities. The anti-oxidation of WSAP3 was further confirmed by test in vitro, which might play an important role in anti-tumor activity. The immunological regulation of WSAP3, especially its effect on the phagocytosis ratio and phagocytosis index of rophage was also assayed in test in vivo.
文摘Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like dispersion. Here,we propose a solute transport model in porous media of continuously expanding scale, according to the combinatorics principle. The model supposed actual porous media as a combinative body of many basic segments. First, we studied the solute transport process in each basic segment body, and then deduced the distribution of pore velocity in each basic segment body by difference approximation, finally assembled the solute transport process of each basic segment body into one of the combinative body. The simulation result coincided with the solute transport process observed in test. The model provides useful insight into the solute transport process of the non-Fickian dispersion in continuously expanding scale.
文摘Soil salt transformation plays an important role in the freeze-thawing process,which is also one of basic problems of cryopedology. The very special law is made up of the two time salt-moisture transfer under freeze-thawing condition. Based on the latest research at home and abroad,through the investigation of soil moisture-salt change in the freeze-thawing process,the conclusion is made that the soil water potential gradient is the main driving force of soil salt movement and the factors are of quantities. The research shows that,when freezing,temperature drops,salt and moisture move towards frozen layer. All make the salinity content of the frozen layer increase significantly. In the thawing process,salinity and moisture in the soil move up again with evaporation and makes the salt second migration.