There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in ...There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).展开更多
Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Nei...Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.展开更多
Three new isostructural binuclear transition metal complexes with azido ion and 1,2-bis(3-(pyridin-2-yl)-lH-pyrazol-1- yl)ethane (bppe), formulated as [M2(N3)2(bppe)2](C104)2 (M = Co, 1; Ni, 2; Cu, 3), w...Three new isostructural binuclear transition metal complexes with azido ion and 1,2-bis(3-(pyridin-2-yl)-lH-pyrazol-1- yl)ethane (bppe), formulated as [M2(N3)2(bppe)2](C104)2 (M = Co, 1; Ni, 2; Cu, 3), were successfully synthesized. They were structurally and magnetically characterized. In 1-3, the double azido ions link two adjacent octahedral metal centers together in the end-to-on mode (EO), with the M-NEo-M angles of 99.41°, 100.24° and 99.80°, respectively. The co-ligand bppe acts as terminal ligand to saturate the remaining coordination sites. The magnetic properties of 1-3 have been investigated in the tem- perature range of 2-300 K. Fitting of the magnetic susceptibility data revealed the occurrence of the strong ferromagnetic in- teractions [J = 26.32 cm-1 (1), J = 38.23 cm-1 (2) and J = 139.83 cm-1 (3)]. Density functional theory calculations have been performed on 1-3 to provide a magneto-structural correlation of the ferromagnetic behavior.展开更多
Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inabi...Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inability to accommodate oxygen vacancies in the rigid,isolated,3-fold tetrahedral rings of SrSi/GeO_(3)-based materials,and the considerable flexibility of BO_(n) polyhedra in terms of coordination number,rotation,deformation,and linkage,we report the first borate-base family of oxide ion conductors,(Gd/Y)_(1−x)Zn_(x)BO_(3−0.5x),through combined computational prediction and experimental verification.The oxygen vacancies in(Gd/Y)BO_(3)can be accommodated by forming B_(3)O_(8)units in isolated,3-fold,tetrahedral rings of B_(3)O_(9)and transported through a cooperative mechanism of oxygen exchange between the B_(3)O_(9)and B_(3)O_(8)units,which is assisted by the intermediate opening and extending of these units.This study opens a new scientific field of the borate system for designing and discovering oxide ion conductors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41590621&41473058)the Fundamental Research Funds for the Central University(Grant No.G1323531512)MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR07),China University of Geosciences at Wuhan
文摘There are potentially huge amounts of water stored in Earth's mantle, and the water solubilities in the silicate minerals range from tens to thousands of part per minion(ppm, part per million). Exploring water in the mantle has attracted much attention from the societies of mineralogy and geophysics in recent years. In the subducting slab, serpentine breaks down at high temperature, generating a series of dense hydrous magnesium silicate(DHMS) phases, such as phase A, chondrodite, clinohumite, etc. These phases may serve as carriers of water as hydroxyl into the upper mantle and the mantle transition zone(MTZ). On the other hand, wadsleyite and ringwoodite, polymorphs of olivine, are most the abundant minerals in the MTZ, and able to absorb significant amount of water(up to about 3 wt.% H_2O). Hence, the MTZ becomes a very important layer for water storage in the mantle, and hydration plays important roles in physics and chemistry of the MTZ. In this paper, we will discuss two aspects of hydrous silicate minerals:(1) crystal structures and(2) equations of state(Eo Ss).
基金supported by the National Natural Science Foundation of China(51804216,51472178 and U1601216)Tianjin Natural Science Foundation(16JCYBJC17600)and Shen-zhen Science and Technology Foundation(JCYJ20170307145703486)
文摘Developing high-performance bifunctional catalysts toward hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is essential to enhance water splitting efficiency for large-scale hydrogen production. Neither noble metal Pt nor transition metal compounds show satisfactory performances for both HER and OER simultaneously. Here, we prepared a three-dimensional Pt-Ni3 Se2@NiOOH/NF(PNOF) hybrid catalyst via in-situ growth strategy. Benefitting from the self-supported structure and oxygen vacancies on the surface of NiOOH nanosheets, the PNOF electrode shows remarkably catalytic performance for dual HER and OER. The overall water electrolyzer using PNOF as anode and cathode can achieve a current density of10 mA cm^-2 at a low voltage of 1.52 V with excellent long-term stability, which is superior to precious metal catalysts of Pt/C and Ir/C. This study provides a promising strategy for preparing bifunctional catalysts with high performance.
基金supported by grants from the National Natural Science Foundation of China (90922032, 21171100, 21151001)Ministry of Education (IRT0927)
文摘Three new isostructural binuclear transition metal complexes with azido ion and 1,2-bis(3-(pyridin-2-yl)-lH-pyrazol-1- yl)ethane (bppe), formulated as [M2(N3)2(bppe)2](C104)2 (M = Co, 1; Ni, 2; Cu, 3), were successfully synthesized. They were structurally and magnetically characterized. In 1-3, the double azido ions link two adjacent octahedral metal centers together in the end-to-on mode (EO), with the M-NEo-M angles of 99.41°, 100.24° and 99.80°, respectively. The co-ligand bppe acts as terminal ligand to saturate the remaining coordination sites. The magnetic properties of 1-3 have been investigated in the tem- perature range of 2-300 K. Fitting of the magnetic susceptibility data revealed the occurrence of the strong ferromagnetic in- teractions [J = 26.32 cm-1 (1), J = 38.23 cm-1 (2) and J = 139.83 cm-1 (3)]. Density functional theory calculations have been performed on 1-3 to provide a magneto-structural correlation of the ferromagnetic behavior.
基金the National Natural Science Foundation of China(22090043 and 21622101)Guangxi Natural Science Foundation(2019GXNSFGA245006)for financial support+2 种基金the National Natural Science Foundation of China(21527803 and 21621061)the Ministry of Science and Technology of China(2016YFA0301004)for financial supportthe funding from China Postdoctoral Science Foundation(8206300392)。
文摘Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inability to accommodate oxygen vacancies in the rigid,isolated,3-fold tetrahedral rings of SrSi/GeO_(3)-based materials,and the considerable flexibility of BO_(n) polyhedra in terms of coordination number,rotation,deformation,and linkage,we report the first borate-base family of oxide ion conductors,(Gd/Y)_(1−x)Zn_(x)BO_(3−0.5x),through combined computational prediction and experimental verification.The oxygen vacancies in(Gd/Y)BO_(3)can be accommodated by forming B_(3)O_(8)units in isolated,3-fold,tetrahedral rings of B_(3)O_(9)and transported through a cooperative mechanism of oxygen exchange between the B_(3)O_(9)and B_(3)O_(8)units,which is assisted by the intermediate opening and extending of these units.This study opens a new scientific field of the borate system for designing and discovering oxide ion conductors.